Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 13(3)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35997449

RESUMO

A fine balance of regulatory (Treg) and conventional CD4+ T cells (Tconv) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the Treg/Tconv balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse Treg and Tconv with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C16-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into Treg and Tconv reflect differences in the ceramide content of cellular membranes.

2.
Front Physiol ; 13: 856143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370781

RESUMO

The bioactive sphingolipids ceramide and sphingosine-1-phosphate (S1P) are involved in the regulation of cell homeostasis and activity ranging from apoptosis to proliferation. We recently described that the two compounds ceranib-2 (inhibiting acid ceramidase) and SKI-II [inhibiting the sphingosine kinases 1 and - 2 (SphK1/2)] reduce mTORC1 activity and measles virus (MV) replication in human primary peripheral blood lymphocytes (PBL) by about one log step. We now further investigated whether mTORC1 downstream signaling and viral protein expression may be affected by ceranib-2 and/or SKI-II. Western blot analyses showed that in uninfected cells the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) was reduced by both inhibitors. Interestingly, MV infection led to an increase of rpS6 protein levels and phosphorylation of eIF4E. Treatment with both inhibitors reduced the rpS6 protein expression, and in addition, SKI-II reduced rpS6 phosphorylation. The phosphorylation of eIF4E was slightly reduced by both inhibitors. In addition, SKI-II led to reduced levels of IKK in MV-infected cells. Both inhibitors reduced the expression of viral proteins and the titers of newly synthesized MV by approximately one log step. As expected, SKI-II and rapamycin reduced also the virally encoded GFP expression; however, ceranib-2 astonishingly led to increased levels of GFP fluorescence. Our findings suggest that the inhibitors ceranib-2 and SKI-II act via differential mechanisms on MV replication. The observed effects on mTORC1 downstream signaling, predominantly the reduction of rpS6 levels by both inhibitors, may affect the translational capacity of the cells and contribute to the antiviral effect in human primary PBL.

3.
Front Physiol ; 12: 715527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658908

RESUMO

Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.

4.
Brain Commun ; 3(2): fcab020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898989

RESUMO

Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3+ regulatory T-cell frequencies among CD4+ T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4+ Foxp3+ regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3+ regulatory T cell among human CD4+ T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4+ Foxp3+ regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA- CD25high effector CD4+ Foxp3+ regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4+ Foxp3+ regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4+ T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4+ T cells in humans both in vivo and in vitro.

5.
Front Immunol ; 10: 2363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681273

RESUMO

In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection.


Assuntos
Ceramidas , Imunomodulação/efeitos dos fármacos , Metabolismo dos Lipídeos , Ativação Linfocitária/efeitos dos fármacos , Esfingomielinas , Linfócitos T/imunologia , Animais , Antígenos CD28/imunologia , Ceramidas/química , Ceramidas/imunologia , Química Click , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/imunologia , Camundongos , Esfingomielinas/síntese química , Esfingomielinas/química , Esfingomielinas/imunologia , Esfingomielinas/farmacologia , Pesquisa Translacional Biomédica
6.
Front Cell Dev Biol ; 7: 218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632969

RESUMO

As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90%) in PBL and 70-80% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5-6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus.

7.
Viruses ; 11(1)2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621148

RESUMO

Recently, we found that the cytidine deaminase APOBEC3G (A3G) inhibits measles (MV) replication. Using a microarray, we identified differential regulation of several host genes upon ectopic expression of A3G. One of the up-regulated genes, the endoplasmic reticulum (ER) protein retention receptor KDELR2, reduced MV replication ~5 fold when it was over-expressed individually in Vero and CEM-SS T cells. Silencing of KDELR2 in A3G-expressing Vero cells abrogated the antiviral activity induced by A3G, confirming its role as an A3G-regulated antiviral host factor. Recognition of the KDEL (Lys-Asp-Glu-Leu) motif by KDEL receptors initiates the retrograde transport of soluble proteins that have escaped the ER and play an important role in ER quality control. Although KDELR2 over-expression reduced MV titers in cell cultures, we observed no interaction between KDELR2 and the MV hemagglutinin (H) protein. Instead, KDELR2 retained chaperones in the ER, which are required for the correct folding and transport of the MV envelope glycoproteins H and fusion protein (F) to the cell surface. Our data indicate that KDELR2 competes with MV envelope proteins for binding to calnexin and GRP78/Bip, and that this interaction limits the availability of the chaperones for MV proteins, causing the reduction of virus spread and titers.


Assuntos
Hemaglutininas Virais/metabolismo , Interações entre Hospedeiro e Microrganismos , Vírus do Sarampo/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Calnexina/metabolismo , Chlorocebus aethiops , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hemaglutininas Virais/genética , Humanos , Vírus do Sarampo/fisiologia , Células Vero , Proteínas de Transporte Vesicular/genética , Proteínas Virais de Fusão/genética , Carga Viral
8.
Biol Chem ; 399(10): 1175-1182, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29908119

RESUMO

Acid sphingomyelinase (ASM) is the rate-limiting enzyme cleaving sphingomyelin into ceramide and phosphorylcholin. CD4+ Foxp3+ regulatory T (Treg) cells depend on CD28 signaling for their survival and function, a receptor that activates the ASM. Both, basal and CD28-induced ASM activities are higher in Treg cells than in conventional CD4+ T (Tconv) cells. In ASM-deficient (Smpd1-/-) as compared to wt mice, membranes of T cells contain 7-10-fold more sphingomyelin and two- to three-fold more ceramide, and are in a state of higher order than membranes of T cells from wt mice, which may facilitate their activation. Indeed, the frequency of Treg cells among CD4+ T cells in ASM-deficient mice and their suppressive activity in vitro are increased. Moreover, in vitro stimulation of ASM-deficient T cells in the presence of TGF-ß and IL-2 leads to higher numbers of induced Treg cells. Pharmacological inhibition of the ASM with a clinically used tricyclic antidepressant such as amitriptyline in mice or in tissue culture of murine or human T cells induces higher frequencies of Treg cells among CD4+ T cells within a few days. This fast alteration of the balance between T cell populations in vitro is due to the elevated cell death of Tconv cells and protection of the CD25high Treg cells by IL-2. Together, these findings suggest that ASM-inhibiting antidepressants, including a fraction of the serotonin re-uptake inhibitors (SSRIs), are moderately immunosuppressive and should be considered for the therapy of inflammatory and autoimmune disorders.


Assuntos
Amitriptilina/farmacologia , Antidepressivos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Imunomodulação/efeitos dos fármacos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/terapia , Humanos , Inflamação/terapia , Camundongos , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/metabolismo , Linfócitos T Reguladores/metabolismo
9.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925665

RESUMO

We found earlier that ectopic expression of the cytidine deaminase APOBEC3G (A3G) in Vero cells inhibits measles virus (MV), respiratory syncytial virus, and mumps virus, while the mechanism of inhibition remained unclear. A microarray analysis revealed that in A3G-transduced Vero cells, several cellular transcripts were differentially expressed, suggesting that A3G regulates the expression of host factors. One of the most upregulated host cell factors, REDD1 (regulated in development and DNA damage response-1, also called DDIT4), reduced MV replication ∼10-fold upon overexpression in Vero cells. REDD1 is an endogenous inhibitor of mTORC1 (mammalian target of rapamycin complex-1), the central regulator of cellular metabolism. Interestingly, rapamycin reduced the MV replication similarly to REDD1 overexpression, while the combination of both did not lead to further inhibition, suggesting that the same pathway is affected. REDD1 silencing in A3G-expressing Vero cells abolished the inhibitory effect of A3G. In addition, silencing of A3G led to reduced REDD1 expression, confirming that its expression is regulated by A3G. In primary human peripheral blood lymphocytes (PBL), expression of A3G and REDD1 was found to be stimulated by phytohemagglutinin (PHA) and interleukin-2. Small interfering RNA (siRNA)-mediated depletion of A3G in PHA-stimulated PBL reduced REDD1 expression and increased viral titers, which corroborates our findings in Vero cells. Silencing of REDD1 also increased viral titers, confirming the antiviral role of REDD1. Finally, pharmacological inhibition of mTORC1 by rapamycin in PHA-stimulated PBL reduced viral replication to the level found in unstimulated lymphocytes, indicating that mTORC1 activity supports MV replication as a proviral host factor.IMPORTANCE Knowledge about host factors supporting or restricting virus replication is required for a deeper understanding of virus-cell interactions and may eventually provide the basis for therapeutic intervention. This work was undertaken predominantly to explain the mechanism of A3G-mediated inhibition of MV, a negative-strand RNA virus that is not affected by the deaminase activity of A3G acting on single-stranded DNA. We found that A3G regulates the expression of several cellular proteins, which influences the capacity of the host cell to replicate MV. One of these, REDD1, which modulates the cellular metabolism in a central position by regulating the kinase complex mTORC1, was identified as the major cellular factor impairing MV replication. These findings show interesting aspects of the function of A3G and the dependence of the MV replication on the metabolic state of the cell. Interestingly, pharmacological inhibition of mTORC1 can be utilized to inhibit MV replication in Vero cells and primary human peripheral blood lymphocytes.


Assuntos
Desaminase APOBEC-3G/genética , Vírus do Sarampo/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Replicação Viral/genética , Desaminase APOBEC-3G/metabolismo , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Replicação do DNA , Interações Hospedeiro-Patógeno/genética , Humanos , Interleucina-2/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Linfócitos/efeitos dos fármacos , Linfócitos/virologia , Vírus do Sarampo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/efeitos dos fármacos , Fito-Hemaglutininas/farmacologia , RNA Interferente Pequeno , Sirolimo/farmacologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
10.
Planta Med ; 83(3-04): 232-238, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27420351

RESUMO

The naphthoquinone droserone (1) is a natural product occurring in dicotyledonous plants. We have now observed that the addition of 1 during infection of tissue culture cells with measles virus considerably reduced the infection. Interestingly, the infection was inhibited only when droserone (1) was added during virus entry, but not when added to the cells prior to virus uptake or after virus uptake. These findings suggest that 1 interacts with viral particles to reduce infectivity. The formation of progeny measles virus particles was inhibited to 50 % by droserone (1) at a concentration (IC50) of approximately 2 µM with a half-maximal cytotoxicity (CC50) of about 60 µM for Vero cells. Other tested naphthoquinone derivatives, among them the likewise natural plumbagin (2), but also synthetic analogs, were either more cytotoxic or not as effective as 1. Thus, our data do not support the development of naphthoquinone derivatives into antiviral compounds, but suggest that they may be interesting research tools to study measles virus entry into cells.


Assuntos
Vírus do Sarampo/isolamento & purificação , Sarampo/tratamento farmacológico , Naftoquinonas/farmacologia , Animais , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Dioncophyllaceae/química , Técnicas In Vitro , Concentração Inibidora 50 , Magnoliopsida/química , Naftoquinonas/química , Células Vero
11.
J Immunol ; 197(8): 3130-3141, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638864

RESUMO

CD4+ Foxp3+ regulatory T cells (Tregs) depend on CD28 signaling for their survival and function, a receptor that has been previously shown to activate the acid sphingomyelinase (Asm)/ceramide system. In this article, we show that the basal and CD28-induced Asm activity is higher in Tregs than in conventional CD4+ T cells (Tconvs) of wild-type (wt) mice. In Asm-deficient (Smpd1-/-; Asm-/-) mice, as compared with wt mice, the frequency of Tregs among CD4+ T cells, turnover of the effector molecule CTLA-4, and their suppressive activity in vitro were increased. The biological significance of these findings was confirmed in our Treg-sensitive mouse model of measles virus (MV) CNS infection, in which we observed more infected neurons and less MV-specific CD8+ T cells in brains of Asm-/- mice compared with wt mice. In addition to genetic deficiency, treatment of wt mice with the Asm inhibitor amitriptyline recapitulated the phenotype of Asm-deficient mice because it also increased the frequency of Tregs among CD4+ T cells. Reduced absolute cell numbers of Tconvs after inhibitor treatment in vivo and extensive in vitro experiments revealed that Tregs are more resistant toward Asm inhibitor-induced cell death than Tconvs. Mechanistically, IL-2 was capable of providing crucial survival signals to the Tregs upon inhibitor treatment in vitro, shifting the Treg/Tconv ratio to the Treg side. Thus, our data indicate that Asm-inhibiting drugs should be further evaluated for the therapy of inflammatory and autoimmune disorders.


Assuntos
Encéfalo/imunologia , Sarampo/imunologia , Morbillivirus/imunologia , Esfingomielina Fosfodiesterase/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Encéfalo/virologia , Antígenos CD28/metabolismo , Antígenos CD4/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Ceramidas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/metabolismo , Ativação Linfocitária , Sarampo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Subpopulações de Linfócitos T/virologia , Linfócitos T Reguladores/virologia
12.
J Virol ; 90(3): 1622-37, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608324

RESUMO

UNLABELLED: Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces ("front" and "back"). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. IMPORTANCE: A complete understanding of the measles virus and canine distemper virus (CDV) cell entry molecular framework is still lacking, thus impeding the rational design of antivirals. Both viruses share many biological features that partially rely on the use of analogous Ig-like host cell receptors, namely, SLAM and nectin 4, for entering immune and epithelial cells, respectively. Here, we provide evidence that the mode of binding between the membrane-distal V domain of SLAM and the attachment protein (H) of morbilliviruses is very likely conserved. Moreover, although structural information revealed two discrete conformational states of H, one of the structures displayed two H-SLAM binding interfaces ("front" and "back"). Our data not only spotlight the front H-binding site of SLAM as the main determinant of membrane fusion promotion but suggest that the triggering efficiency of the viral entry machinery may rely on a local conformational change within the front H-SLAM interactive site rather than the binding affinity.


Assuntos
Antígenos CD/metabolismo , Vírus da Cinomose Canina/fisiologia , Interações Hospedeiro-Patógeno , Receptores de Superfície Celular/metabolismo , Internalização do Vírus , Animais , Antígenos CD/genética , Sítios de Ligação , Linhagem Celular , Análise Mutacional de DNA , Humanos , Proteínas de Fusão de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Receptores de Superfície Celular/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária
13.
Biol Chem ; 396(6-7): 585-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25525752

RESUMO

Viruses exploit membranes and their components such as sphingolipids in all steps of their life cycle including attachment and membrane fusion, intracellular transport, replication, protein sorting and budding. Examples for sphingolipid-dependent virus entry are found for: human immunodeficiency virus (HIV), which besides its protein receptors also interacts with glycosphingolipids (GSLs); rhinovirus, which promotes the formation of ceramide-enriched platforms and endocytosis; or measles virus (MV), which induces the surface expression of its own receptor CD150 via activation of sphingomyelinases (SMases). While SMase activation was implicated in Ebola virus (EBOV) attachment, the virus utilizes the cholesterol transporter Niemann-Pick C protein 1 (NPC1) as 'intracellular' entry receptor after uptake into endosomes. Differential activities of SMases also affect the intracellular milieu required for virus replication. Sindbis virus (SINV), for example, replicates better in cells lacking acid SMase (ASMase). Defined lipid compositions of viral assembly and budding sites influence virus release and infectivity, as found for hepatitis C virus (HCV) or HIV. And finally, viruses manipulate cellular signaling and the sphingolipid metabolism to their advantage, as for example influenza A virus (IAV), which activates sphingosine kinase 1 and the transcription factor NF-κB.


Assuntos
Esfingolipídeos/metabolismo , Fenômenos Fisiológicos Virais , Linhagem Celular , Ceramidas/metabolismo , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Internalização do Vírus
14.
PLoS One ; 9(10): e110120, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295727

RESUMO

Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection.


Assuntos
Antígenos CD/metabolismo , Vírus do Sarampo/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Chlorocebus aethiops , Clonagem Molecular , Células HEK293 , Humanos , Vírus do Sarampo/fisiologia , Camundongos , Dados de Sequência Molecular , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Sigmodontinae , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Transfecção , Células Vero , Replicação Viral
15.
J Virol ; 88(5): 2951-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371057

RESUMO

UNLABELLED: The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE: With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.


Assuntos
Vírus da Cinomose Canina/fisiologia , Fusão de Membrana , Proteínas Virais de Fusão/metabolismo , Substituição de Aminoácidos , Animais , Células CHO , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Fusão Celular , Chlorocebus aethiops , Cricetulus , Cães , Modelos Moleculares , Mutação , Nectinas , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Receptores Virais/metabolismo , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus
16.
Handb Exp Pharmacol ; (216): 321-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563664

RESUMO

Besides their essential role in the immune system, sphingolipids and their metabolites are potential key regulators in the life cycle of obligatory intracellular pathogens such as viruses. They are involved in lateral and vertical segregation of receptors required for attachment, membrane fusion and endocytosis, as well as in the intracellular replication, assembly and release of viruses. Glycosphingolipids may themselves act as receptors for viruses, such as Galactosylceramide for human immunodeficiency virus (HIV). In addition, sphingolipids and their metabolites are inseparably interwoven in signal transduction processes, dynamic alterations of the cytoskeleton, and the regulation of innate and intrinsic responses of infected target cells. Depending on the nature of the intracellular pathogen, they may support or inhibit infections. Understanding of the underlying mechanisms depending on the specific virus, immune control, and type of disease may open new avenues for therapeutic interventions.


Assuntos
Transdução de Sinais , Esfingolipídeos/metabolismo , Viroses/metabolismo , Vírus/patogenicidade , Animais , Antivirais/farmacologia , Desenho de Fármacos , Interações Hospedeiro-Patógeno , Humanos , Transdução de Sinais/efeitos dos fármacos , Viroses/tratamento farmacológico , Viroses/virologia , Internalização do Vírus , Replicação Viral , Vírus/efeitos dos fármacos
17.
PLoS One ; 8(3): e57488, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554862

RESUMO

Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red) adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2) pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5) pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.


Assuntos
Antígenos CD/metabolismo , Vírus da Cinomose Canina/fisiologia , Cinomose/metabolismo , Receptores de Superfície Celular/metabolismo , Replicação Viral , Adaptação Fisiológica/genética , Substituição de Aminoácidos , Animais , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/metabolismo , Doenças Transmissíveis Emergentes/transmissão , Cinomose/genética , Cinomose/transmissão , Cães , Humanos , Mutação de Sentido Incorreto , Receptores de Superfície Celular/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Células Vero
18.
J Virol ; 87(11): 6246-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536664

RESUMO

Cell entry of enveloped viruses is initiated by attachment to the virus receptor followed by fusion between the virus and host cell membranes. Measles virus (MV) attachment to its receptor is mediated by the hemagglutinin (H), which is thought to produce conformational changes in the membrane fusion protein (F) that trigger insertion of its fusion peptide into the target cell membrane. Here, we uncoupled receptor attachment and the fusion-helper function of H by introducing Y481A, R533A, S548L, and F549S mutations into the viral attachment protein that made it blind to its normal receptors. An artificial receptor attachment protein specific for Her2/neu was incorporated into the membranes of pseudotyped lentivirus particles as a separate transmembrane protein along with the F protein. Surprisingly, these particles entered efficiently into Her2/neu-positive SK-OV-3 as well as CHO-Her2 cells. Cell entry was independent of endocytosis but strictly dependent on the presence of H. H-specific monoclonal antibodies, as well as a mutation in H interfering with H/F cooperation, blocked cell entry. The particles mediated stable and specific transfer of reporter genes into Her2/neu-positive human tumor cells also in vivo, while exhibiting improved infectivity and higher titers than Her2/neu-targeted vectors displaying the targeting domain on H. Extending the current model of MV cell entry, the data suggest that receptor binding of H is not required for its fusion-helper function but that particle-cell contact in general may be sufficient to induce the conformational changes in the H/F complex and activate membrane fusion.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus do Sarampo/fisiologia , Sarampo/metabolismo , Receptor ErbB-2/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Feminino , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Camundongos , Camundongos SCID , Receptor ErbB-2/genética , Receptores Virais/genética , Ligação Viral
19.
J Virol ; 87(1): 314-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077316

RESUMO

The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.


Assuntos
Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Morbillivirus/fisiologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Epitopos/imunologia , Humanos , Ligação Proteica , Conformação Proteica
20.
PLoS One ; 7(10): e46667, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071609

RESUMO

Lentiviral vectors (LVs) are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV) glycoproteins, the hemagglutinin (H), responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv) specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV) in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI) of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are promising for in vivo applications of targeting vectors in humans.


Assuntos
Lentivirus/genética , Vírus do Sarampo/genética , Transdução Genética , Proteínas Virais de Fusão/genética , Internalização do Vírus , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Hemaglutininas Virais/genética , Humanos , Lentivirus/imunologia , Lentivirus/fisiologia , Vírus do Sarampo/imunologia , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...