Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891396

RESUMO

Composites revolutionize material performance, fostering innovation and efficiency in diverse sectors. Elastomer-based polymeric composites are crucial for applications requiring superior mechanical strength and durability. Widely applied in automotives, aerospace, construction, and consumer goods, they excel under extreme conditions. Composites based on recycled rubber, fortified with reinforcing fillers, represent a sustainable material innovation by repurposing discarded rubber. The integration of reinforcing agents enhances the strength and resilience of this composite, and the recycled polymeric matrix offers an eco-friendly alternative to virgin elastomers, reducing their environmental impact. Devulcanized rubber, with inherently lower mechanical properties than virgin rubber, requires enhancement of its quality for reuse in a circular economy: considerable amounts of recycled tire rubber can only be applied in new tires if the property profile comes close to the one of the virgin rubber. To achieve this, model passenger car tire and whole tire rubber granulates were transformed into elastomeric composites through optimized devulcanization and blending with additional fillers like carbon black and silica-silane. These fillers were chosen as they are commonly used in tire compounding, but they lose their reactivity during their service life and the devulcanization process. Incorporation of 20% (w/w) additional filler enhanced the strength of the devulcanizate composites by up to 15%. Additionally, increased silane concentration significantly further improved the tensile strength, Payne effect, and dispersion by enhancing the polymer-filler interaction through improved silanization. Higher silane concentrations reduced elongation at break and increased crosslink density, as it leads to a stable filler-polymer network. The optimal concentration of a silica-silane filler system for a devulcanizate was found to be 20% silica with 3% silane, showing the best property profile.

2.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447494

RESUMO

The disposal of tires at the end of their lifespan results in societal and environmental issues. To tackle this, recycling and reuse are effective solutions. Among various recycling methods, devulcanization is considered to be a very sustainable option, as it involves the controlled breakdown of crosslinks while maintaining the polymer backbones. The objective of this study is to develop a sustainable devulcanization process for passenger car tire rubber using silanes. In this study, a thermo-mechanical-chemical devulcanization process was conducted to screen six potential devulcanization aids (DAs). Silanes were chosen as they are widely used in tire rubber as coupling agents for silica. The efficiency of the devulcanization was studied by the degree of network breakdown, miscibility of the devulcanized material, and mechanical properties of the de- and revulcanized material. Compared to the parent compound, a 55-60% network breakdown was achieved for the devulcanizate along with 50-55% of tensile strength recovery. In addition to superior devulcanization efficiency, this DA offers a sustainable alternative to the conventional ones, such as di-phenyl-di-sulphide, due to its compliance with safety regulations. The devulcanizate can be utilized in high-performance applications, such as tires and seals, while 100% devulcanizate can be employed in low-strength technical rubber products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...