Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4592-4604, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340142

RESUMO

In order to increase the adoption of batteries for sustainable transport and energy storage, improved charging and discharging capabilities of lithium-ion batteries are necessary. To achieve this, accurate data that describe the internal state of the cells are essential. Several models have been derived, and transport coefficients have been reported for use in these models. We report for the first time a complete set of transport coefficients to model the concentration and temperature polarization in a lithium-ion battery ternary electrolyte, allowing us to test common assumptions. We include effects due to gradients in chemical potentials and in temperature. We find that the voltage contributions due to salt and solvent polarization are of the same order of magnitude as the ohmic loss and must be taken into account for more accurate modeling and understanding of battery performance. We report new Soret and Seebeck coefficients and find thermal polarization to be significant in cases relevant to battery research. The analysis is suitable for electrochemical systems, in general.

2.
Chemphyschem ; 24(11): e202200443, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883737

RESUMO

Improvements in the thermomechanical properties of epoxy upon inclusion of well-dispersed SiO2 nanoparticles have been demonstrated both experimentally and through molecular dynamics simulations. The SiO2 was represented by two different dispersion models: dispersed individual molecules and as spherical nanoparticles. The calculated thermodynamic and thermomechanical properties were consistent with experimental results. Radial distribution functions highlight the interactions of different parts of the polymer chains with the SiO2 between 3 and 5 nm into the epoxy, depending on the particle size. The findings from both models were verified against experimental results, such as the glass transition temperature and tensile elastic mechanical properties, and proved suitable for predicting thermomechanical and physicochemical properties of epoxy-SiO2 nanocomposites.

3.
J Phys Chem B ; 127(12): 2729-2738, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36921121

RESUMO

A systematic description of microscopic mechanisms is necessary to understand mass transport in solid and liquid electrolytes. From Molecular Dynamics (MD) simulations, transport properties can be computed and provide a detailed view of the molecular and ionic motions. In this work, ionic conductivity and transport numbers in electrolyte systems are computed from equilibrium and nonequilibrium MD simulations. Results from the two methods are compared with experimental results, and we discuss the significance of the frame of reference when determining and comparing transport numbers. Two ways of computing ionic conductivity from equilibrium simulations are presented: the Nernst-Einstein approximation or the Onsager coefficients. The Onsager coefficients take ionic correlations into account and are found to be more suitable for concentrated electrolytes. Main features and differences between equilibrium and nonequilibrium simulations are discussed, and some potential anomalies and critical pitfalls of using nonequilibrium molecular dynamics to determine transport properties are highlighted.

4.
J Chem Phys ; 156(24): 244504, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778084

RESUMO

Fluids confined in small volumes behave differently than fluids in bulk systems. For bulk systems, a compact summary of the system's thermodynamic properties is provided by equations of state. However, there is currently a lack of successful methods to predict the thermodynamic properties of confined fluids by use of equations of state, since their thermodynamic state depends on additional parameters introduced by the enclosing surface. In this work, we present a consistent thermodynamic framework that represents an equation of state for pure, confined fluids. The total system is decomposed into a bulk phase in equilibrium with a surface phase. The equation of state is based on an existing, accurate description of the bulk fluid and uses Gibbs' framework for surface excess properties to consistently incorporate contributions from the surface. We apply the equation of state to a Lennard-Jones spline fluid confined by a spherical surface with a Weeks-Chandler-Andersen wall-potential. The pressure and internal energy predicted from the equation of state are in good agreement with the properties obtained directly from molecular dynamics simulations. We find that when the location of the dividing surface is chosen appropriately, the properties of highly curved surfaces can be predicted from those of a planar surface. The choice of the dividing surface affects the magnitude of the surface excess properties and its curvature dependence, but the properties of the total system remain unchanged. The framework can predict the properties of confined systems with a wide range of geometries, sizes, interparticle interactions, and wall-particle interactions, and it is independent of ensemble. A targeted area of use is the prediction of thermodynamic properties in porous media, for which a possible application of the framework is elaborated.

5.
J Chem Inf Model ; 61(2): 840-855, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33566592

RESUMO

We present a new method for computing chemical potential differences of macroscopic systems by sampling fluctuations in small systems. The small system method, presented by Schnell et al. [Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is used to create small embedded systems from molecular dynamics simulations, in which fluctuations of the number of particles are sampled. The sampled fluctuations represent the Boltzmann distributed probability of the number of particles. The overlapping region of two such distributions, sampled from two different systems, is used to compute their chemical potential difference. Since the thermodynamics of small systems is known to deviate from the classical thermodynamic description, the particle distributions will deviate from the macroscopic behavior as well. We show how this can be utilized to calculate the size dependence of chemical potential differences and eventually extract the chemical potential difference in the thermodynamic limit. The macroscopic chemical potential difference is determined with a relative error of 3% in systems containing particles that interact through the truncated and shifted Lennard-Jones potential. In addition to computing chemical potential differences in the macroscopic limit directly from molecular dynamics simulation, the new method provides insights into the size dependency that is introduced to intensive properties in small systems.


Assuntos
Simulação de Dinâmica Molecular , Probabilidade , Termodinâmica
6.
J Chem Phys ; 155(24): 244504, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972373

RESUMO

Small systems have higher surface area-to-volume ratios than macroscopic systems. The thermodynamics of small systems therefore deviates from the description of classical thermodynamics. One consequence of this is that properties of small systems can be dependent on the system's ensemble. By comparing the properties in grand canonical (open) and canonical (closed) systems, we investigate how a small number of particles can induce an ensemble dependence. Emphasis is placed on the insight that can be gained by investigating ideal gases. The ensemble equivalence of small ideal gas systems is investigated by deriving the properties analytically, while the ensemble equivalence of small systems with particles interacting via the Lennard-Jones or the Weeks-Chandler-Andersen potential is investigated through Monte Carlo simulations. For all the investigated small systems, we find clear differences between the properties in open and closed systems. For systems with interacting particles, the difference between the pressure contribution to the internal energy, and the difference between the chemical potential contribution to the internal energy, are both increasing with the number density. The difference in chemical potential is, with the exception of the density dependence, qualitatively described by the analytic formula derived for an ideal gas system. The difference in pressure, however, is not captured by the ideal gas model. For the difference between the properties in the open and closed systems, the response of increasing the particles' excluded volume is similar to the response of increasing the repulsive forces on the system walls. This indicates that the magnitude of the difference between the properties in open and closed systems is related to the restricted movement of the particles in the system. The work presented in this paper gives insight into the mechanisms behind ensemble in-equivalence in small systems, and illustrates how a simple statistical mechanical model, such as the ideal gas, can be a useful tool in these investigations.

7.
J Phys Chem Lett ; 11(8): 2891-2895, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32208701

RESUMO

Dendrite formation on Li metal anodes hinders commercialization of more energy-dense rechargeable batteries. Here, we use the migration energy barrier (MEB) for surface transport as a descriptor for dendrite nucleation and compare Li to Mg. Density functional theory calculations show that the MEB for the hexagonal close-packed structure is 40 and 270 meV lower than that of the body-centered cubic structure for Li and Mg, respectively. This is suggested as a reason why Mg surfaces are less prone to form dendrites than Li. We show that the close-packed facets exhibit lower MEBs because of smaller changes in atomic coordination during migration and thereby less surface distortion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...