Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 13(5): 801-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21815985

RESUMO

Synchroma grande (Synchromophyceae, Heterokontophyta) is a marine amoeboid alga, which was isolated from a benthic habitat. This species has sessile cell stages (amoeboid cells with lorica and cysts) and non-sessile cell stages (migrating and floating amoebae) during its life cycle. The different cell types and their transitions within the life cycle are described, as are their putative functions. Cell proliferation was observed only in cells attached to the substrate but not in free-floating or migrating cells. We also characterised the phagotrophy of the meroplasmodium in comparison to other amoeboid algae and the formation of the lorica. The functional adaptations of S. grande during its life cycle were compared to the cell stages of other amoeboid algae of the red and green chloroplast lineages. S. grande was found to be highly adapted to the benthic habitat. One sexual and two asexual reproductive strategies (haplo-diploid life cycle) support the ability of this species to achieve rapid diversification and high adaptivity in its natural habitat.


Assuntos
Eucariotos/crescimento & desenvolvimento , Adaptação Fisiológica , Organismos Aquáticos/fisiologia , Processos de Crescimento Celular/fisiologia , Cloroplastos/fisiologia , Ecossistema , Eucariotos/citologia
2.
Ann Bot ; 100(1): 101-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17584851

RESUMO

BACKGROUND AND AIMS: Forisomes are Ca(2+)-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators. METHODS: Existing isolation procedures were modified to study the exceptionally large, tailed forisomes of Canavalia gladiata by differential interference contrast microscopy in vitro. To analyse contraction/expansion kinetics quantitatively, a geometric model was devised which enabled the computation of time-courses of derived parameters such as forisome volume from simple parameters readily determined on micrographs. KEY RESULTS: Advantages of C. gladiata over previously utilized species include the enormous size of its forisomes (up to 55 microm long), the presence of tails which facilitate micromanipulation of individual forisomes, and the possibility of collecting material repeatedly from these fast-growing vines without sacrificing the plants. The main bodies of isolated Canavalia forisomes were box-shaped with square cross-sections and basically retained this shape in all stages of contraction. Ca(2+)-induced a 6-fold volume increase within about 10-15 s; the reverse reaction following Ca(2+)-depletion proceeded in a fraction of that time. CONCLUSIONS: The sword bean C. gladiata provides a superior experimental system which will prove indispensable in physiological, biophysical, ultrastructural and molecular studies on the unique ATP-independent contractility of forisomes.


Assuntos
Sinalização do Cálcio/fisiologia , Canavalia/metabolismo , Modelos Biológicos , Proteínas de Plantas/fisiologia , Cinética , Proteínas de Plantas/química , Proteínas de Plantas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...