Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(68): 41926-41935, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516555

RESUMO

Highly porous carbon-carbon composite electrodes have been synthesized by surface twin polymerization on a macroporous polyacrylonitrile (PAN)-based substrate. For this purpose the compound 2,2'-spirobi[benzo-4H-1,3,2-dioxasiline] (Spiro), being a molecular precursor for phenolic resin and silica, was polymerized onto PAN-based felts with subsequent thermal transformation of the hybrid material-coated felt into silica-containing carbon. The following etching step led to high surface carbon-carbon composite materials, where each carbon component served a different function in the battery electrode: the carbon fiber substrate possesses a high electron conductivity, while the amorphous carbon coating provides the catalytic function. For characterization of the composite materials with respect to structure, porosity and pore size distribution scanning electron microscopy (SEM) as well as nitrogen sorption measurements (BET) were performed. The electrochemical performance of the carbon felts (CF) for application in all-vanadium redox flow batteries was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the pristine PAN-based felt the composite electrodes show significantly enhanced surface areas (up to 35 times higher), which increases the amount of vanadium ions that could be adsorbed onto the surface and thus contributes to an increased performance.

2.
Beilstein J Nanotechnol ; 10: 1131-1139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293851

RESUMO

Highly porous carbon-carbon composite electrodes for the implementation in redox flow battery systems have been synthesized by a novel soft-templating approach. A PAN-based carbon felt was embedded into a solution containing a phenolic resin, a nitrogen source (pyrrole-2-carboxaldehyde) and a sulfur source (2-thiophenecarboxaldehyde), as well as a triblock copolymer (Pluronic® F-127) acting as the structure-directing agent. By this strategy, highly porous carbon phase co-doped with nitrogen and sulfur was obtained inside the macroporous carbon felt. For the investigation of electrode structure and porosity X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen sorption (BET) were used. The electrochemical performance of the carbon felts was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The N- and S-doped carbon electrodes show promising activity for the positive side reaction and could be seen as a significant advance in the design of carbon felt electrodes for use in redox flow batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...