Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(37): 16964-16980, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39222251

RESUMO

An isostructural series of FeII, FeIII, and FeIV complexes [Fe(ImP)2]0/+/2+ utilizing the ImP 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene) ligand, combining N-heterocyclic carbenes and cyclometalating functions, is presented. The strong donor motif stabilizes the high-valent FeIV oxidation state yet keeps the FeII oxidation state accessible from the parent FeIII compound. Chemical oxidation of [Fe(ImP)2]+ yields stable [FeIV(ImP)2]2+. In contrast, [FeII(ImP)2]0, obtained by reduction, is highly sensitive toward oxygen. Exhaustive ground state characterization by single-crystal X-ray diffraction, 1H NMR, Mössbauer spectroscopy, temperature-dependent magnetic measurements, a combination of X-ray absorption near edge structure and valence-to-core, as well as core-to-core X-ray emission spectroscopy, complemented by detailed density functional theory (DFT) analysis, reveals that the three complexes [Fe(ImP)2]0/+/2+ can be unequivocally attributed to low-spin d6, d5, and d4 complexes. The excited state landscape of the FeII and FeIV complexes is characterized by short-lived 3MLCT and 3LMCT states, with lifetimes of 5.1 and 1.4 ps, respectively. In the FeII-compound, an energetically low-lying MC state leads to fast deactivation of the MLCT state. The distorted square-pyramidal state, where one carbene is dissociated, can not only relax into the ground state, but also into a singlet dissociated state. Its formation was investigated with time-dependent optical spectroscopy, while insights into its structure were gained by NMR spectroscopy.

2.
Chemphyschem ; 24(23): e202300113, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768846

RESUMO

A new approach for the characterization of CO2 methanation catalysts prepared by thermal decomposition of a nickel MOF by hard X-ray photon-in/photon-out spectroscopy in form of high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) and valence-to-core X-ray emission (VtC-XES) is presented. In contrast to conventional X-ray absorption spectroscopy, the increased resolution of both methods allows a more precise phase determination of the final catalyst, which is influenced by the conditions during MOF decomposition.

3.
Inorg Chem ; 62(39): 15797-15808, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37718553

RESUMO

Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.

4.
Angew Chem Int Ed Engl ; 62(35): e202308752, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37427718

RESUMO

An isostructural series of boron/phosphorus Lewis pairs was systematically investigated. The association constants of the Lewis pairs were determined at variable temperatures, enabling the extraction of thermodynamic parameters. The stabilization of the Lewis adduct increased with increasing size of the dispersion energy donor groups, although the donor and acceptor properties of the Lewis pairs remained largely unchanged. This data was utilized to challenge state-of-the-art quantum chemical methods, which finally led to an enhanced workflow for the determination of thermochemical properties of weakly bound Lewis pairs within an accuracy of 0.6 to 1.0 kcal mol-1 for computed association free energies.

5.
Nat Chem ; 15(4): 468-474, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849804

RESUMO

Although iron is a dream candidate to substitute noble metals in photoactive complexes, realization of emissive and photoactive iron compounds is demanding due to the fast deactivation of their charge-transfer states. Emissive iron compounds are scarce and dual emission has not been observed before. Here we report the FeIII complex [Fe(ImP)2][PF6] (HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene)), showing a Janus-type dual emission from ligand-to-metal charge transfer (LMCT)- and metal-to-ligand charge transfer (MLCT)-dominated states. This behaviour is achieved by a ligand design that combines four N-heterocyclic carbenes with two cyclometalating aryl units. The low-lying π* levels of the cyclometalating units lead to energetically accessible MLCT states that cannot evolve into LMCT states. With a lifetime of 4.6 ns, the strongly reducing and oxidizing MLCT-dominated state can initiate electron transfer reactions, which could constitute a basis for future applications of iron in photoredox catalysis.

6.
Chem Commun (Camb) ; 59(20): 2990, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815296

RESUMO

Correction for 'Distinct photodynamics of κ-N and κ-C pseudoisomeric iron(II) complexes' by Philipp Dierks et al., Chem. Commun., 2021, 57, 6640-6643, https://doi.org/10.1039/D1CC01716K.

7.
Angew Chem Int Ed Engl ; 62(13): e202216959, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36621900

RESUMO

A series of redox-responsive ferrocenyl-substituted boranes and boronic esters were synthesized. Oxidation of the ferrocenyl ligand to the ferrocenium resulted in a drastic increase in the Lewis acidity beyond the strength of SbF5 , which was investigated experimentally and computationally. The resulting highly Lewis acidic boron compounds were used for catalytic C-F and S-F bond activation.

8.
ChemistryOpen ; 12(11): e202300003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36703547

RESUMO

The synthesis of three novel imidazolyl-substituted sulfur-containing heteroacenes is reported. These heteroacenes consisting of annelated benzo- and naphthothiophenes serve as precursors for the generation of open-shell quinoid heteroacenes by oxidation with alkaline ferric cyanide. Spectroscopic and computational experiments support the formation of reactive open-shell quinoids, which, however, quickly produce paramagnetic polymeric material.

9.
Angew Chem Int Ed Engl ; 61(31): e202204378, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35535567

RESUMO

The stereospecific sigmatropic [1,5] carbon shift of C3 ammonium enolates is discovered. According to mechanistic, kinetic and computational experiments, this new rearrangement proceeds via the catalytic generation of a transient C3 ammonium enolate by intramolecular aza-Michael addition. This intermediate rapidly undergoes [1,5] sigmatropic carbon migration to furnish the respective tetrahydroquinoline-4-ones with excellent diastereoselectivities of d.r. >99 : 1 and in 61-98 % yield.

10.
Chemistry ; 28(23): e202200478, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35254693

RESUMO

The synthesis and characterisation of a homologous series of quinoid sulfur-containing imidazolyl-substituted heteroacenes is described. The optoelectronic and magnetic properties were investigated by UV/vis, fluorescence and EPR spectroscopy as well as quantum-chemical calculations, and were compared to those of the corresponding benzo congener. The room-temperature and atmospherically stable quinoids display strong absorption in the NIR region between 678 and 819 nm. The dithieno[3,2-b:2',3'-d]thiophene and the thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene derivatives were EPR active at room temperature. For the latter, variable-temperature EPR spectroscopy revealed the presence of a thermally accessible triplet state, with a singlet-triplet separation of 14.1 kJ mol-1 .

11.
Angew Chem Int Ed Engl ; 61(1): e202110821, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34596960

RESUMO

Metal-catalyzed C-H activations are environmentally and economically attractive synthetic strategies for the construction of functional molecules as they obviate the need for pre-functionalized substrates and minimize waste generation. Great challenges reside in the control of selectivities, the utilization of unbiased hydrocarbons, and the operation of atom-economical dehydrocoupling mechanisms. An especially mild borylation of benzylic CH bonds was developed with the ligand-free pre-catalyst Co[N(SiMe3 )2 ]2 and the bench-stable and inexpensive borylation reagent B2 pin2 that produces H2 as the only by-product. A full set of kinetic, spectroscopic, and preparative mechanistic studies are indicative of a tandem catalysis mechanism of CH-borylation and dehydrocoupling via molecular CoI catalysts.

12.
Chemistry ; 28(8): e202104108, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34882848

RESUMO

Covalent organic frameworks (COFs) offer vast structural and chemical diversity enabling a wide and growing range of applications. While COFs are well-established as heterogeneous catalysts, so far, their high and ordered porosity has scarcely been utilized to its full potential when it comes to spatially confined reactions in COF pores to alter the outcome of reactions. Here, we present a highly porous and crystalline, large-pore COF as catalytic support in α,ω-diene ring-closing metathesis reactions, leading to increased macrocyclization selectivity. COF pore-wall modification by immobilization of a Grubbs-Hoveyda-type catalyst via a mild silylation reaction provides a molecularly precise heterogeneous olefin metathesis catalyst. An increased macro(mono)cyclization (MMC) selectivity over oligomerization (O) for the heterogeneous COF-catalyst (MMC:O=1.35) of up to 51 % compared to the homogeneous catalyst (MMC:O=0.90) was observed along with a substrate-size dependency in selectivity, pointing to diffusion limitations induced by the pore confinement.


Assuntos
Alcenos , Estruturas Metalorgânicas , Catálise , Ciclização , Porosidade
13.
Dalton Trans ; 50(46): 17361-17371, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34788774

RESUMO

We report the syntheses of two rigid mesoionic carbene (MIC) ligands with a carbazole backbone via an intramolecular Finkelstein-cyclisation cascade and investigate their coordination behavior towards nickel(II) acetate. Despite the nickel(II) carbene complexes 4a,b showing only minor differences in their chemical composition, they display curious differences in their chemical properties, e.g. solubility. Furthermore, the potential of these novel MIC complexes in the coupling of carbon dioxide and epoxides as well as the differences in reactivity compared to classical NHC-derived complexes are evaluated.

14.
Chem Commun (Camb) ; 57(61): 7541-7544, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34240092

RESUMO

Combining strong σ-donating N-heterocyclic carbene ligands and π-accepting pyridine ligands with a high octahedricity in rigid iron(ii) complexes increases the 3MLCT lifetime from 0.15 ps in the prototypical [Fe(tpy)2]2+ complex to 9.2 ps in [Fe(dpmi)2]2+12+. The tripodal CNN ligand dpmi (di(pyridine-2-yl)(3-methylimidazol-2-yl)methane) forms six-membered chelate rings with the iron(ii) centre leading to close to 90° bite angles and enhanced iron-ligand orbital overlap.

15.
Chem Commun (Camb) ; 57(54): 6640-6643, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34126627

RESUMO

Two closely related FeII complexes with 2,6-bis(1-ethyl-1H-1,2,3-triazol-4yl)pyridine and 2,6-bis(1,2,3-triazol-5-ylidene)pyridine ligands are presented to gain new insights into the photophysics of bis(tridentate) iron(ii) complexes. The [Fe(N^N^N)2]2+ pseudoisomer sensitizes singlet oxygen through a MC state with nanosecond lifetime after MLCT excitation, while the bis(tridentate) [Fe(C^N^C)2]2+ pseudoisomer possesses a similar 3MLCT lifetime as the tris(bidentate) [Fe(C^C)2(N^N)]2+ complexes with four mesoionic carbenes.

16.
Org Lett ; 23(9): 3626-3630, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843243

RESUMO

The borane-catalyzed synthesis of dihydroquinoline-4-ones is developed. The amino-substituted chalcones undergo a 1,7-hydride shift upon Lewis acid activation to form a zwitterionic iminium enolate, which collapses to the dihydroquinoline-4-one scaffold. The reaction proceeds in high yields (75-99%) with an excellent diastereoselectivity of up to >99:1 (cis:trans). The reaction mechanism is investigated by kinetic, isotope labeling, and computational experiments.

17.
Chemistry ; 27(38): 9905-9918, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33884671

RESUMO

A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3 MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3 MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3 MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2 (py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.

18.
Angew Chem Int Ed Engl ; 60(17): 9534-9539, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33565689

RESUMO

We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(µ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(µ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.

19.
Chem Commun (Camb) ; 56(98): 15410-15413, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33236740

RESUMO

Deprotonation of the terminal phosphido complex (PN)2La(PHMes) (1) results in the C-H-activation of one of the PN ligands, formally retaining the PHMes group. The reaction mechanism and the possible involvement of the transient phosphinidene complex 2 are investigated by theoretical and chemical means including a deuteration experiment employing (PN)2La(PDMes) (1-d). Furthermore, the thermal stability of product [K(2.2.2-cryptand)][(PN)(PNcyclo)La(PHMes)] (3b) is examined, giving the diphosphido complex [K(2.2.2-cryptand)][(PN)2La(P2Mes2)] (6).

20.
Inorg Chem ; 59(18): 13621-13631, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32885972

RESUMO

A new route to heterobimetallic lanthanide-coinage-metal complexes is disclosed. The selective insertion of organic substrates such as phenyl iso(thio)cyanate into the La-P bond of the primary phosphido complex (PN)2La(PHMes) (1) (with PN- = (N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide) yields the phospha(thio)ureate complexes (PN)2La(OC(NPh)(PHMes)) (2) and (PN)2La(SC(NPh)(PHMes)) (3) with retention of the PH protons. Subsequent deprotonation of the phosphaureate complex 2 with potassium hexamethyldisilazide (KHMDS, K[N(SiMe3)2]) leads to the polymeric complex [K{(PN)2La(OC(NPh)(PMes))}]n (4). Complex 4 was found to be an excellent precursor for salt metathesis reactions with copper(I) and gold(I) chlorides supported by an N-heterocyclic carbene (NHC, 5 and 6) or a cyclic alkyl amino carbene (CAAC, 7 and 8). This resulted in the unprecedented formation of heterobimetallic lanthanum-coinage-metal complexes, containing the first example of a µ,κ2(O,N):κ1(P)-phosphaureate bridging ligand. For an alternative route to complex 8 a direct protonolysis protocol between a new basic gold(I) precursor, namely (MeCAAC)Au(HMDS), and 2 was also investigated. The complexes have been characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography (except for 8).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA