Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38747693

RESUMO

The use of algae as feedstock for industrial purposes, such as in bioethanol production, is desirable. During a search for new agarolytic marine bacteria, a novel Gram-stain-negative, strictly aerobic, and agarolytic bacterium, designated as TS8T, was isolated from algae in the harbour of the island of Susak, Croatia. The cells were rod-shaped and motile. The G+C content of the sequenced genome was 38.6 mol%. Growth was observed at 11-37 °C, with 0.5-13 % (w/v) NaCl, and at pH 6.0-9.0. The main fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C16 : 0. The main respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences indicated that the newly isolated strain belongs to the genus Catenovulum. Based on 16S rRNA gene sequence data, strain TS8T is closely related to Catenovulum sediminis D2T (95.7 %), Catenovulum agarivorans YM01T (95.0 %), and Catenovulum maritimum Q1T (93.2 %). Digital DNA-DNA hybridization values between TS8T and the other Catenovulum strains were below 25 %. Based on genotypic, phenotypic, and phylogenetic data, strain TS8T represents a new species of the genus Catenovulum, for which the name Catenovulum adriaticum sp. nov. is proposed. The type strain is TS8T (=DSM 114830T=NCIMB 15451T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Ubiquinona , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Croácia , DNA Bacteriano/genética , Fosfolipídeos/química , Fosfolipídeos/análise , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas
2.
Bioengineering (Basel) ; 10(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38135972

RESUMO

The depletion of fossil fuel resources and the CO2 emissions coupled with petroleum-based industrial processes present a relevant issue for the whole of society. An alternative to the fossil-based production of chemicals is microbial fermentation using acetogens. Acetogenic bacteria are able to metabolize CO or CO2 (+H2) via the Wood-Ljungdahl pathway. As isopropanol is widely used in a variety of industrial branches, it is advantageous to find a fossil-independent production process. In this study, Acetobacterium woodii was employed to produce isopropanol via plasmid-based expression of the enzymes thiolase A, CoA-transferase, acetoacetate decarboxylase and secondary alcohol dehydrogenase. An examination of the enzymes originating from different organisms led to a maximum isopropanol production of 5.64 ± 1.08 mM using CO2 + H2 as the carbon and energy source. To this end, the genes thlA (encoding thiolase A) and ctfA/ctfB (encoding CoA-transferase) of Clostridium scatologenes, adc (encoding acetoacetate decarboxylase) originating from C. acetobutylicum and sadH (encoding secondary alcohol dehydrogenase) of C. beijerinckii DSM 6423 were employed. Since bottlenecks in the isopropanol production pathway are known, optimization of the strain was investigated, resulting in a 2.5-fold increase in isopropanol concentration.

3.
Microorganisms ; 11(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513028

RESUMO

Biotechnological processes at biorefineries are considered one of the most attractive alternatives for valorizing biomasses by converting them into bioproducts, biofuels, and bioenergy. For example, biodiesel can be obtained from oils and grease but generates glycerol as a byproduct. Glycerol recycling has been studied in several bioprocesses, with one of them being its conversion to 1,3-propanediol (1,3-PDO) by Clostridium. Clostridium beijerinckii is particularly interesting because it can produce a range of industrially relevant chemicals, including solvents and organic acids, and it is non-pathogenic. However, while Clostridium species have many potential advantages as chassis for synthetic biology applications, there are significant limitations when considering their use, such as their limited genetic tools, slow growth rate, and oxygen sensitivity. In this work, we carried out the overexpression of the genes involved in the synthesis of 1,3-PDO in C. beijerinckii Br21, which allowed us to increase the 1,3-PDO productivity in this strain. Thus, this study contributed to a better understanding of the metabolic pathways of glycerol conversion to 1,3-PDO by a C. beijerinckii isolate. Also, it made it possible to establish a transformation method of a modular vector in this strain, therefore expanding the limited genetic tools available for this bacterium, which is highly relevant in biotechnological applications.

4.
Microorganisms ; 11(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36985357

RESUMO

1,3-propanediol (1,3-PDO) is a valuable basic chemical, especially in the polymer industry to produce polytrimethylene terephthalate. Unfortunately, the production of 1,3-PDO mainly depends on petroleum products as precursors. Furthermore, the chemical routes have significant disadvantages, such as environmental issues. An alternative is the biobased fermentation of 1,3-PDO from cheap glycerol. Clostridium beijerinckii DSM 6423 was originally reported to produce 1,3-PDO. However, this could not be confirmed, and a genome analysis revealed the loss of an essential gene. Thus, 1,3-PDO production was genetically reinstalled. Genes for 1,3-PDO production from Clostridium pasteurianum DSM 525 and Clostridium beijerinckii DSM 15410 (formerly Clostridium diolis) were introduced into C. beijerinckii DSM 6423 to enable 1,3-PDO production from glycerol. 1,3-PDO production by recombinant C. beijerinckii strains were investigated under different growth conditions. 1,3-PDO production was only observed for C. beijerinckii [pMTL83251_Ppta-ack_1,3-PDO.diolis], which harbors the genes of C. beijerinckii DSM 15410. By buffering the growth medium, production could be increased by 74%. Furthermore, the effect of four different promoters was analyzed. The use of the constitutive thlA promoter from Clostridium acetobutylicum led to a 167% increase in 1,3-PDO production compared to the initial recombinant approach.

5.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36269567

RESUMO

Clostridium aurantibutyricum, Clostridium felsineum and Clostridium roseum share a very high similarity based on multi-locus sequence analysis. In this study, their correct taxonomic status was determined using genomic and phenotypic investigations. Average nucleotide identity based on MUMmer alignment of the genomes and in silico DNA-DNA hybridization resulted in values of 98.55-100 and 78.7-100 %, respectively, strongly indicating that all strains are members of the same species. In addition, morphological investigations, fatty acid analyses and substrate utilization tests revealed no striking differences between the strains. Therefore, we propose the reclassification of C. aurantibutyricum and C. roseum as later heterotypic synonyms of C. felsineum. The type strain is lodged in several culture collections (ATCC 17788T=DSM 794T=NCIMB 10690T).


Assuntos
Ácidos Graxos , Nucleotídeos , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Filogenia , Composição de Bases , Ácidos Graxos/química
6.
Biotechnol J ; 17(5): e2100515, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35077002

RESUMO

The capability of four genetically modified Acetobacterium woodii strains for improved production of acetone from CO2 and hydrogen was tested. The acetone biosynthesis pathway was constructed by combining genes from Clostridium acetobutylicum and Clostridium aceticum. Expression of acetone production genes was demonstrated in all strains. In bioreactors with continuous gas supply, all produced acetic acid, acetone, and, surprisingly, isopropanol. The production of isopropanol was caused by an endogenous secondary alcohol dehydrogenase (SADH) activity at low gas-feeding rate. Although high amounts of the natural end product acetic acid of A. woodii were formed,14.5 mM isopropanol and 7.6 mM acetone were also detected, showing that this is a promising approach for the production of new solvents from C1 gases. The highest acetic acid, acetone, and isopropanol production was detected in the recombinant A. woodii [pJIR750_ac1t1] strain, with final concentrations of 438 mM acetic acid, 7.6 mM acetone, and 14.5 mM isopropanol. The engineered strain A. woodii [pJIR750_ac1t1] was found to be the most promising strain for acetone production from a gas mixture of CO2 and H2 and the formation of isopropanol in A. woodii was shown for the first time.


Assuntos
Dióxido de Carbono , Clostridium acetobutylicum , 2-Propanol , Ácido Acético , Acetobacterium , Acetona , Dióxido de Carbono/metabolismo , Clostridium acetobutylicum/metabolismo , Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...