Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(23): 25124-25134, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882148

RESUMO

Core/shell nanofibers offer the advantage of encapsulating multiple drugs with different hydrophilicity in the core and shell, thus allowing for the controlled release of pharmaceutic agents. Specifically, the burst release of hydrophilic drugs from such fiber membranes causes an instantaneous high drug concentration, whereas a long and steady release is usually desired. Herein, we tackle the problem of the initial burst release by the generation of core/shell nanofibers with the hydrophilic antibiotic drug gentamycin loaded within a hydrophilic alginate core surrounded by a hydrophobic shell of poly(ε-caprolactone). Emulsion electrospinning was used as the nanofibrous mesh generation procedure. This process also allows for the loading of a hydrophobic compound, where we selected a natural antioxidant molecule, betulin (BTL), to detoxify the radicals. The resulting nanofibers exhibited a cylindrical shape with a core/shell structure. In vitro tests showed a controlled release of gentamicin from nanofibers via diffusion. The drug reached 93% release in an alginate hydrogel film but only 50% release in the nanofibers, suggesting its potential to minimize the initial burst release. Antibacterial tests revealed significant activity against both Gram-negative and Gram-positive bacteria. The antioxidant property of betulin was confirmed through the DPPH assay, where the incorporation of 20% BTL revealed 37.3% DPPH scavenging. The nanofibers also exhibited favorable biocompatibility in cell culture studies, and no harmful effects on cell viability were observed. Overall, this research offers a promising approach to producing core/shell nanofibrous mats with antibacterial and antioxidant properties, which could effectively address the requirements of wound dressings, including infection prevention and wound healing acceleration.

2.
Nanoscale Adv ; 5(19): 5276-5285, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767031

RESUMO

Amyloid fibrils made from inexpensive hen egg white lysozyme (HEWL) are bio-based, bio-degradable and bio-compatible colloids with broad-spectrum antimicrobial activity, making them an attractive alternative to existing small-molecule antibiotics. Their surface activity leads to the formation of 2D foam films within a loop, similar to soap films when blowing bubbles. The stability of the foam was optimized by screening concentration and pH, which also revealed that the HEWL amyloid foams were actually stabilized by unconverted peptides unable to undergo amyloid self-assembly rather than the fibrils themselves. The 2D foam film was successfully deposited on different substrates to produce a homogenous coating layer with a thickness of roughly 30 nm. This was thick enough to shield the negative charge of dry cellulose nanopaper substrates, leading to a positively charged HEWL amyloid coating. The coating exhibited a broad-spectrum antimicrobial effect based on the interactions with the negatively charged cell walls and membranes of clinically relevant pathogens (Staphylococcus aureus, Escherichia coli and Candida albicans). The coating method presented here offers an alternative to existing techniques, such as dip and spray coating, in particular when optimized for continuous production. Based on the facile preparation and broad spectrum antimicrobial performance, we anticipate that these biohybrid materials could potentially be used in the biomedical sector as wound dressings.

3.
Nanoscale Adv ; 5(8): 2261-2270, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37056625

RESUMO

Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 °C than at 25 °C regardless of the ethylene content. Additionally, at 25 °C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.

4.
Nanoscale Adv ; 4(13): 2929-2941, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36131996

RESUMO

Electrospun nanofibers have shown great potential as drug vehicles and tissue engineering scaffolds. However, the successful encapsulation of multiple hydrophilic/hydrophobic therapeutic compounds is still challenging. Herein, sodium alginate/poly(ε-caprolactone) core/shell nanofibers were fabricated via water-in-oil emulsion electrospinning. The sodium alginate concentration, water-to-oil ratio, and surfactant concentration were optimized for the maximum stability of the emulsion. The results demonstrated that an increasing water-to-oil ratio results in more deviation from Newtonian fluid and leads to a broader distribution of the fibers' diameters. Moreover, increasing poly(ε-caprolactone) concentration increases loss and storage moduli and increases the diameter of the resulting fibers. The nanofibers' characteristics were investigated by scanning electron microscopy, transmission electron microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. It was observed that using an emulsion composition of 10% (w/v) PCL and a water-to-oil ratio of 0.1 results in smooth, cylindrical, and uniform core/shell nanofibers with PCL in the shell and ALG in the core. The in vitro cell culture study demonstrated the favorable biocompatibility of nanofibers. Overall, this study provides a promising and trustworthy material for biomedical applications.

5.
Soft Matter ; 18(30): 5662-5675, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861313

RESUMO

Pronounced fingering of the waterfront is observed for in-plane wicking in thin, aligned electrospun fibrous membranes. We hypothesize that a perturbation in capillary pressure triggers the onset of fingering, which grows in a non-local manner based on the waterfront gradient. Vertical and horizontal wicking in thin electrospun membranes of poly(ethylene-co-vinyl alcohol) (EVOH) fibers with varying fiber alignment and degree of orientation is studied with backlight photography. A non-local transport model considering the gradient of the waterfront is developed, where fiber orientation is modeled with a correlated random field. The model shows that a transition from straight to highly fingered waterfront occurs during water uptake as observed in the experiment. The size and shape of the fingers depend on fiber orientation. Based on good model agreement, we show that, during wicking in thin electrospun membranes, fingering is initially triggered by a perturbation in capillary pressure caused by the underlying anisotropic and heterogeneous membrane structure which grows in a non-local manner depending on the waterfront gradient.

6.
Nanoscale Adv ; 4(2): 491-501, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35178501

RESUMO

Electrospinning is a versatile technique to produce nanofibrous membranes with applications in filtration, biosensing, biomedical and tissue engineering. The structural and therefore physical properties of electrospun fibers can be finely tuned by changing the electrospinning parameters. The large parameter window makes it challenging to optimize the properties of fibers for a specific application. Therefore, a fundamental understanding of the multiscale structure of fibers and its correlation with their macroscopic behaviors is required for the design and production of systems with dedicated applications. In this study, we demonstrate that the properties of poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-HFP) electrospun fibers can be tuned by changing the rotating drum speed used as a collector during electrospinning. Indeed, with the help of multiscale characterization techniques such as scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS), we observe that increasing the rotating drum speed not only aligns the fibers but also induces polymeric chain rearrangements at the molecular scale. Such changes result in enhanced mechanical properties and an increase of the piezoelectric ß-phase of the PVDF-HFP fiber membranes. We detect nanostructural deformation behaviors when the aligned fibrous membrane is uniaxially stretched along the fiber alignment direction, while an increase in the alignment of the fibers is observed for randomly aligned samples. This was analyzed by performing in situ SAXS measurements coupled with uniaxial tensile loading of the fibrous membranes along the fiber alignment direction. The present study shows that fibrous membranes can be produced with varying degrees of fiber orientation, piezoelectric ß-phase content, and mechanical properties by controlling the speed of the rotating drum collector during the fiber production. Such aligned fiber membranes have potential applications for neural or musculoskeletal tissue engineering.

7.
Chimia (Aarau) ; 76(3): 229-235, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069737

RESUMO

The rising interest in designing fibres via spinning techniques combining the properties of various polymeric materials into advanced functionalised materials is directed towards targeted biomedical applications such as drug delivery, wearable sensors or tissue engineering. Understanding how these functional polymers exhibit multiscale structures ranging from the molecular level to nano-, micro-and millimetre scale is a key prerequisite for their challenging applications that can be addressed by a non-destructive X-ray based analytical approach. X-ray multimodalities combining X-ray imaging, scattering and diffraction allow the study of morphology, molecular structure, and the analysis of nano-domain size and shape, crystallinity and preferential orientation in 3D arrangements. The incorporation of X-ray analytics in the design process of polymeric fibers via their nanostructure under non-ambient conditions (i.e. temperature, mechanical load, humidity…) allows for efficient optimization of the fabrication process as well as quality control along the product lifetime under operating environmental conditions. Here, we demonstrate the successful collaboration between the laboratory of Biomimetic Textiles and Membranes and the Center of X-ray Analytics at Empa for the design, characterisation and optimisation of advanced functionalised polymeric fibrous material systems.

8.
Nanomaterials (Basel) ; 11(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34361236

RESUMO

The surface functionalization of electrospun nanofibers allows for the introduction of additional functionalities while at the same time retaining the membrane properties of high porosity and surface-to-volume ratio. In this work, we sequentially deposited layers of chitosan and alginate to form a polyelectrolyte complex via layer-by-layer assembly on PLGA nanofibers to introduce pH-responsiveness for the controlled release of ibuprofen. The deposition of the polysaccharides on the surface of the fibers was revealed using spectroscopy techniques and ζ-potential measurements. The presence of polycationic chitosan resulted in a positive surface charge (16.2 ± 4.2 mV, pH 3.0) directly regulating the interactions between a model drug (ibuprofen) loaded within the polyelectrolyte complex and the layer-by-layer coating. The release of ibuprofen was slowed down in acidic pH (1.0) compared to neutral pH as a result of the interactions between the drug and the coating. The provided mesh acts as a promising candidate for the design of drug delivery systems required to bypass the acidic environment of the digestive tract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...