Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697234

RESUMO

In a 13-week inhalation toxicity study with three recovery periods (3, 6, and 12 months), Crl: WI rats were allocated to nine groups, each containing 25 animals per sex. Eight groups were treated daily by inhalation with the test items at concentrations of 0.5, 1.0, 2.5, or 5.0 mg/m3 (SAS 1 groups 2, 3, 4, or 5, respectively; SAS 2 groups 6, 7, 8, or 9, respectively). Controls (group 1) were treated with air only. In nasal cavities, the major lesions consisted of increased eosinophilic globules and chitinase-3-like-protein-positive crystalloids* in the nasal mucosa, mainly in nasal cavity levels 2-4 up to week 26 of recovery without any further injury in olfactory mucosa, mainly in SAS 1-treated animals. Eosinophilic globules in the rodent nasal cavity are common and increase with age; they represent a particular finding of the rodent nasal mucosa. The relevance of chitinase-3-like protein (Ym1 + Ym2) expression in the rodent nasal mucosa is unknown but is normal in control animals. Both findings developed without any indicator for inflammatory processes. The increase of these unspecific background findings is considered an indicator of minor irritative effects. Due to the clear lack of nasal tissue injury or concurrent changes (degeneration, necrosis, inflammatory infiltrate, dysplasia, and/or neoplasia) following repeated inhalation exposure to SAS, it is deemed that the eosinophilic globules (hyaline inclusions) combined with the formation of eosinophilic protein crystalloids in this study represent an adaptive response.

3.
FASEB J ; 33(1): 275-285, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979630

RESUMO

Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.-Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drücker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Köffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.


Assuntos
Toxinas Bacterianas/farmacologia , Membrana Celular/metabolismo , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Estreptolisinas/farmacologia , Proteínas de Bactérias/farmacologia , Transporte Biológico , Sistemas CRISPR-Cas , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Humanos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Front Immunol ; 9: 1688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100903

RESUMO

Bacterial infectious diseases are a leading cause of death. Pore-forming toxins (PFTs) are important virulence factors of Gram-positive pathogens, which disrupt the plasma membrane of host cells and can lead to cell death. Yet, host defense and cell membrane repair mechanisms have been identified: i.e., PFTs can be eliminated from membranes as microvesicles, thus limiting the extent of cell damage. Released into an inflammatory environment, these host-derived PFTs-carrying microvesicles encounter innate immune cells as first-line defenders. This study investigated the impact of microvesicle- or liposome-sequestered PFTs on human macrophage polarization in vitro. We show that microvesicle-sequestered PFTs are phagocytosed by macrophages and induce their polarization into a novel CD14+MHCIIlowCD86low phenotype. Macrophages polarized in this way exhibit an enhanced response to Gram-positive bacterial ligands and a blunted response to Gram-negative ligands. Liposomes, which were recently shown to sequester PFTs and so protect mice from lethal bacterial infections, show the same effect on macrophage polarization in analogy to host-derived microvesicles. This novel type of polarized macrophage exhibits an enhanced response to Gram-positive bacterial ligands. The specific recognition of their cargo might be of advantage in the efficiency of targeted bacterial clearance.


Assuntos
Toxinas Bacterianas/imunologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/imunologia , Transdução de Sinais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade , Imunomodulação , Imunofenotipagem , Modelos Biológicos , Monócitos/imunologia , Monócitos/metabolismo , Fenótipo
5.
Front Immunol ; 9: 815, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720981

RESUMO

By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca2+ mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization.


Assuntos
Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/fisiologia , Esfingomielina Fosfodiesterase/imunologia , Linfócitos T/imunologia , Complexo CD3/imunologia , Diferenciação Celular , Ceramidas/farmacologia , Humanos , Células Jurkat , Ativação Linfocitária , Centro Organizador dos Microtúbulos/imunologia , Fosforilação , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Proteína-Tirosina Quinase ZAP-70/metabolismo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 795-805, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679741

RESUMO

Nucleated cells eliminate lesions induced by bacterial pore-forming toxins, such as pneumolysin via shedding patches of damaged plasmalemma into the extracellular milieu. Recently, we have shown that the majority of shed pneumolysin is present in the form of inactive pre-pores. This finding is surprising considering that shedding is triggered by Ca2+-influx following membrane perforation and therefore is expected to positively discriminate for active pores versus inactive pre-pores. Here we provide evidence for the existence of plasmalemmal domains that are able to attract pneumolysin at high local concentrations. Within such a domain an immediate plasmalemmal perforation induced by a small number of pneumolysin pores would be capable of triggering the elimination of a large number of not yet active pre-pores/monomers and thus pre-empt more frequent and perilous perforation events. Our findings provide further insights into the functioning of the cellular repair machinery which benefits from an inhomogeneous plasmalemmal distribution of pneumolysin.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Bicamadas Lipídicas/metabolismo , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/metabolismo , Derrame de Bactérias/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Colesterol/metabolismo , Células HEK293 , Humanos , Microscopia Intravital , Bicamadas Lipídicas/imunologia , Microfluídica , Infecções Pneumocócicas/microbiologia , Estreptolisinas/metabolismo
7.
Biochim Biophys Acta ; 1860(11 Pt A): 2498-2509, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27481675

RESUMO

BACKGROUND: Streptococcus pneumoniae is a potent human pathogen. Its pore-forming exotoxin pneumolysin is instrumental for breaching the host's epithelial barrier and for the incapacitation of the immune system. METHODS AND RESULTS: Using a combination of life imaging and cryo-electron microscopy we show that pneumolysin, released by cultured bacteria, is capable of permeabilizing the plasmalemma of host cells. However, such permeabilization does not lead to cell lysis since pneumolysin is actively removed by the host cells. The process of pore elimination starts with the formation of pore-bearing plasmalemmal nanotubes and proceeds by the shedding of pores that are embedded in the membrane of released microvesicles. Pneumolysin prepores are likewise removed. The protein composition of the toxin-induced microvesicles, assessed by mass spectrometry, is suggestive of a Ca(2+)-triggered mechanism encompassing the proteins of the annexin family and members of the endosomal sorting complex required for transport (ESCRT) complex. CONCLUSIONS: S. pneumoniae releases sufficient amounts of pneumolysin to perforate the plasmalemma of host cells, however, the immediate cell lysis, which is frequently reported as a result of treatment with purified and artificially concentrated toxin, appears to be an unlikely event in vivo since the toxin pores are efficiently eliminated by microvesicle shedding. Therefore the dysregulation of cellular homeostasis occurring as a result of transient pore formation/elimination should be held responsible for the damaging toxin action. GENERAL SIGNIFICANCE: We have achieved a comprehensive view of a general plasma membrane repair mechanism after injury by a major bacterial toxin.


Assuntos
Membrana Celular/ultraestrutura , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/farmacologia , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/microbiologia , Permeabilidade da Membrana Celular , Células HEK293 , Células HeLa , Humanos , Estreptolisinas/toxicidade
8.
J Tissue Eng Regen Med ; 10(1): 52-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23881794

RESUMO

Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications.


Assuntos
Âmnio/citologia , Líquido Amniótico/citologia , Prótese Vascular , Engenharia Tecidual/métodos , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Proliferação de Células , Separação Celular , Forma Celular , Sobrevivência Celular , Aberrações Cromossômicas , Células Endoteliais/citologia , Feminino , Genótipo , Glicoproteínas/metabolismo , Cariotipagem , Células-Tronco Mesenquimais , Miofibroblastos/citologia , Peptídeos/metabolismo , Fenótipo , Gravidez , Ovinos , Alicerces Teciduais/química , Transplante Autólogo
9.
Biochim Biophys Acta ; 1853(9): 2045-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25219550

RESUMO

Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca²âº entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca²âº sequestration that prevents excessive Ca²âº elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca²âº signals in cells that were able to survive after PLY attack. Intracellular Ca²âº dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca²âº signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Streptococcus pneumoniae/química , Estreptolisinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular , Células HEK293 , Humanos , Estreptolisinas/química
10.
Biochimie ; 107 Pt A: 66-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25183513

RESUMO

Eukaryotic cells have developed repair mechanisms, which allow them to reseal their membrane in order to prevent the efflux of cytoplasmic constituents and the uncontrolled influx of calcium. After injury, the Ca(2+)-concentration gradient fulfils a dual function: it provides guidance cues for the repair machinery and directly activates the molecules, which have a repair function. Depending on the nature of injury, the morphology of the cell and the severity of injury, the membrane resealing can be effected by lysosomal exocytosis, microvesicle shedding or a combination of both. Likewise, exocytosis is often followed by the endocytic uptake of lesions. Additionally, since plasmalemmal resealing must be attempted, even after extensive injury in order to prevent cell lysis, the restoration of membrane integrity can be achieved by ceramide-driven invagination of the lipid bilayer, during which the cell is prepared for apoptotic disposal. Plasmalemmal injury can be contained by a surfeit of plasma membrane, which serves as a trap for toxic substances: either passively by an abundance of cellular protrusions, or actively by membrane blebbing.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Exocitose , Lisossomos/metabolismo , Animais , Micropartículas Derivadas de Células/metabolismo , Endocitose , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Biológicos
11.
PLoS One ; 9(2): e89743, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587004

RESUMO

Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.


Assuntos
Membrana Celular/fisiologia , Micropartículas Derivadas de Células/fisiologia , Lisossomos/fisiologia , Estreptolisinas/farmacologia , Citoesqueleto de Actina/metabolismo , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular , Células HEK293 , Humanos , Imunidade Inata , Fusão de Membrana , Miosinas/metabolismo
12.
Biochim Biophys Acta ; 1843(5): 915-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24487066

RESUMO

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.


Assuntos
Receptores Purinérgicos P2X7/fisiologia , Estreptolisinas/toxicidade , Proteínas de Bactérias/toxicidade , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Humanos , Reação em Cadeia da Polimerase
13.
Cell Mol Life Sci ; 71(1): 165-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23708682

RESUMO

Cardiomyocytes grow during heart maturation or disease-related cardiac remodeling. We present evidence that the intercalated disc (ID) is integral to both longitudinal and lateral growth: increases in width are accommodated by lateral extension of the plicate tread regions and increases in length by sarcomere insertion within the ID. At the margin between myofibril and the folded membrane of the ID lies a transitional junction through which the thin filaments from the last sarcomere run to the ID membrane and it has been suggested that this junction acts as a proto Z-disc for sarcomere addition. In support of this hypothesis, we have investigated the ultrastructure of the ID in mouse hearts from control and dilated cardiomyopathy (DCM) models, the MLP-null and a cardiac-specific ß-catenin mutant, cΔex3, as well as in human left ventricle from normal and DCM samples. We find that the ID amplitude can vary tenfold from 0.2 µm up to a maximum of ~2 µm allowing gradual expansion during heart growth. At the greatest amplitude, equivalent to a sarcomere length, A-bands and thick filaments are found within the ID membrane loops together with a Z-disc, which develops at the transitional junction position. Here, also, the tops of the membrane folds, which are rich in αII spectrin, become enlarged and associated with junctional sarcoplasmic reticulum. Systematically larger ID amplitudes are found in DCM samples. Other morphological differences between mouse DCM and normal hearts suggest that sarcomere inclusion is compromised in the diseased hearts.


Assuntos
Miócitos Cardíacos/ultraestrutura , Sarcômeros/ultraestrutura , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Ventrículos do Coração/metabolismo , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Espectrina/metabolismo , Tropomiosina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
FASEB J ; 27(6): 2156-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23413360

RESUMO

Skeletal muscle complaints are a common consequence of cholesterol-lowering therapy. Transverse tubular (T-tubular) vacuolations occur in patients having statin-associated myopathy and, to a lesser extent, in statin-treated patients without myopathy. We have investigated quantitative changes in T-tubular morphology and looked for early indicators of T-tubular membrane repair in skeletal muscle biopsy samples from patients receiving cholesterol-lowering therapy who do not have myopathic side effects. Gene expression and protein levels of incipient membrane repair proteins were monitored in patients who tolerated statin treatment without myopathy and in statin-naive subjects. In addition, morphometry of the T-tubular system was performed. Only the gene expression for annexin A1 was up-regulated, whereas the expression of other repair genes remained unchanged. However, annexin A1 and dysferlin protein levels were significantly increased. In statin-treated patients, the volume fraction of the T-tubular system was significantly increased, but the volume fraction of the sarcoplasmic reticulum remained unchanged. A complex surface structure in combination with high mechanical loads makes skeletal muscle plasma membranes susceptible to injury. Ca(2+)-dependent membrane repair proteins such as dysferlin and annexin A1 are deployed at T-tubular sites. The up-regulation of annexin A1 gene expression and protein points to this protein as a biomarker for T-tubular repair.


Assuntos
Anexina A1/biossíntese , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Anexina A1/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/lesões , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Biomaterials ; 33(16): 4031-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22421386

RESUMO

Prenatal heart valve interventions aiming at the early and systematic correction of congenital cardiac malformations represent a promising treatment option in maternal-fetal care. However, definite fetal valve replacements require growing implants adaptive to fetal and postnatal development. The presented study investigates the fetal implantation of prenatally engineered living autologous cell-based heart valves. Autologous amniotic fluid cells (AFCs) were isolated from pregnant sheep between 122 and 128 days of gestation via transuterine sonographic sampling. Stented trileaflet heart valves were fabricated from biodegradable PGA-P4HB composite matrices (n = 9) and seeded with AFCs in vitro. Within the same intervention, tissue engineered heart valves (TEHVs) and unseeded controls were implanted orthotopically into the pulmonary position using an in-utero closed-heart hybrid approach. The transapical valve deployments were successful in all animals with acute survival of 77.8% of fetuses. TEHV in-vivo functionality was assessed using echocardiography as well as angiography. Fetuses were harvested up to 1 week after implantation representing a birth-relevant gestational age. TEHVs showed in vivo functionality with intact valvular integrity and absence of thrombus formation. The presented approach may serve as an experimental basis for future human prenatal cardiac interventions using fully biodegradable autologous cell-based living materials.


Assuntos
Líquido Amniótico/citologia , Sangue Fetal/citologia , Valvas Cardíacas/citologia , Ovinos/embriologia , Células-Tronco/citologia , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Fenômenos Biomecânicos , Valvas Cardíacas/diagnóstico por imagem , Ultrassonografia Pré-Natal
16.
Biomaterials ; 32(36): 9630-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21978890

RESUMO

Interventional closure of intracardiac wall defects using occluder devices has evolved as a highly attractive treatment option. However, incomplete and delayed healing reactions often result in a major risk of residual defects, thromboembolism, or device fractures. Biodegradable living tissue engineered occluder membranes (TEOMs) could provide autologous thromboresistant implants with growth and remodeling capacities. PGA-P4HB composite matrices were seeded with human umbilical cord-derived cells or vascular-derived control cells and exposed to static (n = 19) or dynamic (n = 13) conditioning. Harvested TEOMs were integrated into occluder frameworks, exposed to crimping and delivered into pre-formed defects of juvenile porcine hearts. Dynamically conditioned TEOM constructs showed higher collagen formation in histology than static constructs with significantly higher stiffness moduli in uniaxial tensile testing. Grating interferometry revealed substantial but inhomogeneous cone-like degradation of the composite matrices in dynamic conditioning. The crimping and delivery procedures resulted in no significant changes in macroscopy, histo-morphology, cellular viability, DNA or hydroxyproline content, and scanning electron microscopy findings. Here, we present the in vitro fabrication, crimping and experimental delivery of living human umbilical cord-cell derived TEOMs based on composite matrices as a potential future autologous therapy of intracardiac wall defects.


Assuntos
Membranas Artificiais , Poliésteres/química , Ácido Poliglicólico/química , Dispositivo para Oclusão Septal , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cordão Umbilical/citologia , Animais , Bioengenharia , Fenômenos Biomecânicos , Separação Celular , Forma Celular , Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Interferometria , Teste de Materiais , Microscopia Eletrônica de Varredura , Fenótipo , Sus scrofa , Sobrevivência de Tecidos , Geleia de Wharton/citologia
17.
Eur Heart J ; 32(22): 2830-40, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21415068

RESUMO

AIMS: A living heart valve with regeneration capacity based on autologous cells and minimally invasive implantation technology would represent a substantial improvement upon contemporary heart valve prostheses. This study investigates the feasibility of injectable, marrow stromal cell-based, autologous, living tissue engineered heart valves (TEHV) generated and implanted in a one-step intervention in non-human primates. METHODS AND RESULTS: Trileaflet heart valves were fabricated from non-woven biodegradable synthetic composite scaffolds and integrated into self-expanding nitinol stents. During the same intervention autologous bone marrow-derived mononuclear cells were harvested, seeded onto the scaffold matrix, and implanted transapically as pulmonary valve replacements into non-human primates (n = 6). The transapical implantations were successful in all animals and the overall procedure time from cell harvest to TEHV implantation was 118 ± 17 min. In vivo functionality assessed by echocardiography revealed preserved valvular structures and adequate functionality up to 4 weeks post implantation. Substantial cellular remodelling and in-growth into the scaffold materials resulted in layered, endothelialized tissues as visualized by histology and immunohistochemistry. Biomechanical analysis showed non-linear stress-strain curves of the leaflets, indicating replacement of the initial biodegradable matrix by living tissue. CONCLUSION: Here, we provide a novel concept demonstrating that heart valve tissue engineering based on a minimally invasive technique for both cell harvest and valve delivery as a one-step intervention is feasible in non-human primates. This innovative approach may overcome the limitations of contemporary surgical and interventional bioprosthetic heart valve prostheses.


Assuntos
Próteses Valvulares Cardíacas , Transplante de Células-Tronco Mesenquimais , Monócitos/transplante , Valva Pulmonar/fisiologia , Transplante de Células-Tronco/métodos , Animais , Bioprótese , Estudos de Viabilidade , Citometria de Fluxo , Sobrevivência de Enxerto/fisiologia , Injeções , Microscopia Eletrônica de Varredura , Papio ursinus , Stents , Engenharia Tecidual , Alicerces Teciduais , Transplante Autólogo
18.
Eur Heart J ; 32(21): 2713-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21292680

RESUMO

AIMS: Collagen degradation in atherosclerotic plaques with thin fibrous caps renders them more prone to rupture. Fibroblast activation protein (FAP) plays a role in arthritis and tumour formation through its collagenase activity. However, the significance of FAP in thin-cap human fibroatheromata remains unknown. METHODS AND RESULTS: We detected enhanced FAP expression in type IV-V human aortic atheromata (n = 12), compared with type II-III lesions (n = 9; P < 0.01) and healthy aortae (n = 8; P < 0.01) by immunostaining and western blot analyses. Fibroblast activation protein was also increased in thin-cap (<65 µm) vs. thick-cap (≥ 65 µm) human coronary fibroatheromata (n = 12; P < 0.01). Fibroblast activation protein was expressed by human aortic smooth muscle cells (HASMC) as shown by colocalization on immunofluorescent aortic plaque stainings (n = 10; P < 0.01) and by flow cytometry in cell culture. Although macrophages did not express FAP, macrophage burden in human aortic plaques correlated with FAP expression (n = 12; R(2)= 0.763; P < 0.05). Enzyme-linked immunosorbent assays showed a time- and dose-dependent up-regulation of FAP in response to human tumour necrosis factor α (TNFα) in HASMC (n = 6; P < 0.01). Moreover, supernatants from peripheral blood-derived macrophages induced FAP expression in cultured HASMC (n = 6; P < 0.01), an effect abolished by blocking TNFα (n = 6; P < 0.01). Fibroblast activation protein associated with collagen-poor regions in human coronary fibrous caps and digested type I collagen and gelatin in vitro (n = 6; P < 0.01). Zymography revealed that FAP-mediated collagenase activity was neutralized by an antibody directed against the FAP catalytic domain both in HASMC (n = 6; P < 0.01) and in fibrous caps of atherosclerotic plaques (n = 10; P < 0.01). CONCLUSION: Fibroblast activation protein expression in HASMC is induced by macrophage-derived TNFα. Fibroblast activation protein associates with thin-cap human coronary fibroatheromata and contributes to type I collagen breakdown in fibrous caps.


Assuntos
Doenças da Aorta/metabolismo , Colágeno Tipo I/metabolismo , Doença da Artéria Coronariana/metabolismo , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Placa Aterosclerótica/metabolismo , Serina Endopeptidases/metabolismo , Adulto , Idoso , Análise de Variância , Células Cultivadas , Colagenases , Endopeptidases , Células Endoteliais/metabolismo , Gelatinases/antagonistas & inibidores , Humanos , Inibidores de Metaloproteinases de Matriz , Proteínas de Membrana/antagonistas & inibidores , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
19.
Semin Immunopathol ; 33(3): 307-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21279358

RESUMO

Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used. In a second step, these scaffolds are seeded with autologous cells attaching to the scaffold microstructure. In order to promote neo-tissue formation and maturation, the seeded scaffolds are exposed to different forms of stimulation. In cardiovascular tissue engineering, this "conditioning" can be achieved via culture media and biomimetic in vitro exposure, e.g., using flow bioreactors. This aims at adequate cellular differentiation, proliferation, and extracellular matrix production to form a living tissue called the construct. These living autologous constructs, such as heart valves or vascular grafts, are created in vitro, comprising a viable interstitium with repair and remodeling capabilities already prior to implantation. In situ further in vivo remodeling is intended to recapitulate physiological vascular architecture and function. The remodeling mechanisms were shown to be dominated by monocytic infiltration and chemotactic host-cell attraction leading into a multifaceted inflammatory process and neo-tissue formation. Key molecules of these processes can be integrated into the scaffold matrix to direct cell and tissue fate in vivo.


Assuntos
Matriz Extracelular/transplante , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Prótese Vascular , Células Endoteliais/metabolismo , Humanos , Miofibroblastos/metabolismo , Células-Tronco/metabolismo , Alicerces Teciduais , Transplante Autólogo
20.
Basic Res Cardiol ; 106(2): 233-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21069531

RESUMO

The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = -0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Sarcômeros/metabolismo , Adulto , Processamento Alternativo , Animais , Biomarcadores/metabolismo , Cardiomiopatia Dilatada/diagnóstico por imagem , Conectina , Citoesqueleto/metabolismo , Progressão da Doença , Ecocardiografia , Feminino , Técnicas de Introdução de Genes , Humanos , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Isoformas de Proteínas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...