Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(11): 2863-2871, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32990429

RESUMO

In view of the steadily increasing number of chemical compounds used in various products and applications, high-throughput toxicity screening techniques can help meeting the needs of 21st century risk assessment. Zebrafish (Danio rerio), especially its early life stages, are increasingly used in such screening efforts. In contrast, cell lines derived from this model organism have received less attention so far. A conceivable reason is the limited knowledge about their overall capacity to biotransform chemicals and the spectrum of expressed biotransformation pathways. One important biotransformation route is the mercapturic acid pathway, which protects organisms from harmful electrophilic compounds. The fully functional pathway involves a succession of several enzymatic reactions. To investigate the mercapturic acid pathway performance in the zebrafish embryonic cell line, PAC2, we analyzed the biotransformation products of the reactions comprising this pathway in the cells exposed to a nontoxic concentration of the reference substrate, 1-chloro-2,4-dinitrobenzene (CDNB). Additionally, we used targeted proteomics to measure the expression of cytosolic glutathione S-transferases (GSTs), the enzyme family catalyzing the first reaction in this pathway. Our results reveal that the PAC2 cell line expresses a fully functional mercapturic acid pathway. All but one of the intermediate CDNB biotransformation products were identified. The presence of the active mercapturic acid pathway in this cell line was further supported by the expression of a large palette of GST enzyme classes. Although the enzymes of the class alpha, one of the dominant GST classes in the zebrafish embryo, were not detected, this did not seem to affect the capacity of the PAC2 cells to biotransform CDNB. Our data provide an important contribution toward using zebrafish cell lines, specifically PAC2, for animal-free high- throughput screening in toxicology and chemical hazard assessment.


Assuntos
Acetilcisteína/metabolismo , Acetilcisteína/química , Animais , Biotransformação , Células Cultivadas , Estrutura Molecular , Peixe-Zebra
2.
Eur J Pharm Biopharm ; 142: 488-497, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31330257

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely incorporated in various consumer products such as cosmetics and food. Despite known human exposure, the potential risks of TiO2 NPs during pregnancy are not fully understood, but several studies in mice elucidated toxic effects on fetal development. It has also been shown that modifying NPs with positive or negative surface charge alters cellular uptake and abolishes fetotoxicity of silicon dioxide (SiO2) NPs in mice. Here, we investigated accumulation and translocation of positively charged TiO2-NH2 and negatively charged TiO2-COOH NPs at the placental barrier, to clarify whether surface charge provides a means to control TiO2 NP distribution at the placental barrier. To ensure outcome relevant for humans, the recently developed in vitro human placental co-culture model and the gold standard amongst placental translocation models - the ex vivo perfusion of human term placental tissue - were employed during this study. Sector field-ICP-MS analysis of maternal and fetal supernatants as well as placental cells/tissues revealed a substantial accumulation of both TiO2 NP types while no considerable placental translocation was apparent in both models. Characterization of agglomeration behavior demonstrated a strong and fast agglomeration of TiO2-NH2 and TiO2-COOH NPs in the different culture media. Overall, our results indicate that surface charge is not a key factor to steer placental uptake and transfer of TiO2. Moreover, the negligible placental transfer but high accumulation of TiO2 NPs in placental tissue suggests that potential effects on fetal health may occur indirectly, which calls for further studies elucidating the impact of TiO2 NPs on placental tissue functionality and signaling.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nanopartículas/metabolismo , Placenta/metabolismo , Titânio/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Feminino , Humanos , Gravidez , Dióxido de Silício/metabolismo
3.
J Bacteriol ; 189(20): 7165-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17693490

RESUMO

Bile acids are surface-active steroid compounds with toxic effects for bacteria. Recently, the isolation and characterization of a bacterium, Pseudomonas sp. strain Chol1, growing with bile acids as the carbon and energy source was reported. In this study, initial reactions of the aerobic degradation pathway for the bile acid cholate were investigated on the biochemical and genetic level in strain Chol1. These reactions comprised A-ring oxidation, activation with coenzyme A (CoA), and beta-oxidation of the acyl side chain with the C(19)-steroid dihydroxyandrostadienedione as the end product. A-ring oxidizing enzyme activities leading to Delta(1,4)-3-ketocholyl-CoA were detected in cell extracts and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cholate activation with CoA was demonstrated in cell extracts and confirmed with a chemically synthesized standard by LC-MS/MS. A transposon mutant with a block in oxidation of the acyl side chain accumulated a steroid compound in culture supernatants which was identified as 7alpha,12alpha-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) by nuclear magnetic resonance spectroscopy. The interrupted gene was identified as encoding a putative acyl-CoA-dehydrogenase (ACAD). DHOPDC activation with CoA in cell extracts of strain Chol1 was detected by LC-MS/MS. The growth defect of the transposon mutant could be complemented by the wild-type ACAD gene located on the plasmid pBBR1MCS-5. Based on these results, the initiating reactions of the cholate degradation pathway leading from cholate to dihydroxyandrostadienedione could be reconstructed. In addition, the first bacterial gene encoding an enzyme for a specific reaction step in side chain degradation of steroid compounds was identified, and it showed a high degree of similarity to genes in other steroid-degrading bacteria.


Assuntos
Colatos/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Pseudomonas/enzimologia , Pseudomonas/genética , Acil-CoA Desidrogenase/genética , Aerobiose , Sequência de Aminoácidos , Coenzima A/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutagênese Insercional , Oxirredução , Pseudomonas/química , Pseudomonas/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...