Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4196, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378866

RESUMO

Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.


Assuntos
Voo Espacial , Humanos , Astronautas , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Marcha
2.
Aging Cell ; 22(9): e13935, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493006

RESUMO

Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.


Assuntos
Relógios Circadianos , Voo Espacial , Animais , Humanos , Idoso , Ritmo Circadiano/genética , Envelhecimento/genética , Relógios Circadianos/genética , Drosophila , Mamíferos
3.
NPJ Microgravity ; 9(1): 30, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012297

RESUMO

The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.

4.
Sci Rep ; 12(1): 13654, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953503

RESUMO

The assessment of muscle health is of paramount importance, as the loss of muscle mass and strength can affect performance. Two non-invasive tools that have been found to be useful in this are the MyotonPRO and rehabilitative ultrasound imaging, both have shown to be reliable in previous studies many of which conducted by the research team. This study aims to determine the reliability of previously unassessed local body structures and to determine their minimal detectable changes (MDC) to support both researchers and clinicians. Twenty healthy participants were recruited to determine the reliability of seven skin positions out of a previously established protocol. Reliability was determined between three independent raters, and day to day reliability was assessed with one rater a week apart. Intraclass Correlation Coefficients (ICC) between raters and between days for tissue stiffness, tone and elasticity range from moderate to excellent (ICC 0.52-0.97), with most good or excellent. ICCs for subcutaneous thickness between days was good or excellent (ICC 0.86-0.91) and moderate to excellent between raters (ICC 0.72-0.96), in muscles it was moderate to excellent between raters and days (ICC 0.71-0.95). The protocol in this study is repeatable with overall good reliability, it also provides established MDC values for several measurement points.


Assuntos
Músculos , Tela Subcutânea , Humanos , Valores de Referência , Reprodutibilidade dos Testes , Ultrassonografia
5.
Front Physiol ; 9: 810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018567

RESUMO

The human resting muscle tone (HRMT) system provides structural and functional support to skeletal muscle and associated myofascial structures (tendons, fascia) in normal life. Little information is available on changes to the HRMT in bed rest. A set of dynamic oscillation mechanosignals ([Hz], [N/m], log decrement, [ms]) collected and computed by a hand-held digital palpation device (MyotonPRO) were used to study changes in tone and in key biomechanical and viscoelastic properties in global and postural skeletal muscle tendons and fascia from a non-exercise control (CTR) and an exercise (JUMP) group performing reactive jumps on a customized sledge system during a 60 days head-down tilt bed rest (RSL Study 2015-2016). A set of baseline and differential natural oscillation signal patterns were identified as key determinants in resting muscle and myofascial structures from back, thigh, calf, patellar and Achilles tendon, and plantar fascia. The greatest changes were found in thigh and calf muscle and tendon, with little change in the shoulder muscles. Functional tests (one leg jumps, electromyography) showed only trends in relevant leg muscle groups. Increased anti-Collagen-I immunoreactivity found in CTR soleus biopsy cryosections was absent from JUMP. Results allow for a muscle health status definition after chronic disuse in bed rest without and with countermeasure, and following reconditioning. Findings improve our understanding of structural and functional responses of the HRMT to disuse and exercise, may help to guide treatment in various clinical settings (e.g., muscle tone disorders, neuro-rehabilitation), and promote monitoring of muscle health and training status in personalized sport and space medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...