Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 817, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280859

RESUMO

Animals have evolved mechanisms to travel safely and efficiently within different habitats. On a journey in dense terrains animals avoid collisions and cross narrow passages while controlling an overall course. Multiple hypotheses target how animals solve challenges faced during such travel. Here we show that a single mechanism enables safe and efficient travel. We developed a robot inspired by insects. It has remarkable capabilities to travel in dense terrain, avoiding collisions, crossing gaps and selecting safe passages. These capabilities are accomplished by a neuromorphic network steering the robot toward regions of low apparent motion. Our system leverages knowledge about vision processing and obstacle avoidance in insects. Our results demonstrate how insects might safely travel through diverse habitats. We anticipate our system to be a working hypothesis to study insects' travels in dense terrains. Furthermore, it illustrates that we can design novel hardware systems by understanding the underlying mechanisms driving behaviour.


Assuntos
Visão Ocular , Percepção Visual , Animais , Insetos , Movimento (Física)
2.
IEEE Trans Neural Netw Learn Syst ; 33(5): 1959-1973, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34495850

RESUMO

Neuromorphic systems are a viable alternative to conventional systems for real-time tasks with constrained resources. Their low power consumption, compact hardware realization, and low-latency response characteristics are the key ingredients of such systems. Furthermore, the event-based signal processing approach can be exploited for reducing the computational load and avoiding data loss due to its inherently sparse representation of sensed data and adaptive sampling time. In event-based systems, the information is commonly coded by the number of spikes within a specific temporal window. However, the temporal information of event-based signals can be difficult to extract when using rate coding. In this work, we present a novel digital implementation of the model, called time difference encoder (TDE), for temporal encoding on event-based signals, which translates the time difference between two consecutive input events into a burst of output events. The number of output events along with the time between them encodes the temporal information. The proposed model has been implemented as a digital circuit with a configurable time constant, allowing it to be used in a wide range of sensing tasks that require the encoding of the time difference between events, such as optical flow-based obstacle avoidance, sound source localization, and gas source localization. This proposed bioinspired model offers an alternative to the Jeffress model for the interaural time difference estimation, which is validated in this work with a sound source lateralization proof-of-concept system. The model was simulated and implemented on a field-programmable gate array (FPGA), requiring 122 slice registers of hardware resources and less than 1 mW of power consumption.


Assuntos
Redes Neurais de Computação , Neurônios , Computadores , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador
3.
Front Neurosci ; 14: 451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457575

RESUMO

Attentional selectivity tends to follow events considered as interesting stimuli. Indeed, the motion of visual stimuli present in the environment attract our attention and allow us to react and interact with our surroundings. Extracting relevant motion information from the environment presents a challenge with regards to the high information content of the visual input. In this work we propose a novel integration between an eccentric down-sampling of the visual field, taking inspiration from the varying size of receptive fields (RFs) in the mammalian retina, and the Spiking Elementary Motion Detector (sEMD) model. We characterize the system functionality with simulated data and real world data collected with bio-inspired event driven cameras, successfully implementing motion detection along the four cardinal directions and diagonally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...