Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163149

RESUMO

The plasma levels of tissue-specific microRNAs can be used as diagnostic, disease severity and prognostic biomarkers for chronic and acute diseases and drug-induced injury. Thereby, the combination of diverse microRNAs into biomarker signatures using multivariate statistics seems especially powerful from the perspective of tissue and condition specific microRNA shedding into the plasma. Although next-generation sequencing (NGS) technology enables one to analyse circulating microRNAs on a genome-scale level, it suffers from potential biases (e.g., adapter ligation bias) and lacks absolute transcript quantitation as well as tailor-made quality controls. In order to develop a robust NGS discovery assay for genome-scale quantitation of circulating microRNAs, we first evaluated the sensitivity, repeatability and ligation bias of four commercially available small RNA library preparation protocols. The protocol from RealSeq Biosciences was selected based on its performance and usability and coupled with a novel panel of exogenous small RNA spike-in controls to enable quality control and absolute quantitation, thus ensuring comparability of data across independent NGS experiments. The established microRNA Next-Generation-Sequencing Discovery Assay (miND) was validated for its relative accuracy, precision, analytical measurement range and sequencing bias and was considered fit-for-purpose for microRNA biomarker discovery. Summarized, all these criteria were met, and thus, our analytical platform is considered fit-for-purpose for microRNA biomarker discovery from biofluids in the setting of any diagnostic, prognostic or patient stratification need. The established miND assay was tested on serum, cerebrospinal fluid (CSF), synovial fluid (SF) and extracellular vesicles (EV) extracted from cell culture medium of primary cells and proved its potential to be used across different sample types.


Assuntos
Biomarcadores/análise , MicroRNA Circulante/análise , Vesículas Extracelulares/metabolismo , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , MicroRNA Circulante/sangue , MicroRNA Circulante/líquido cefalorraquidiano , Humanos
3.
Arch Toxicol ; 95(11): 3475-3495, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510227

RESUMO

microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems.


Assuntos
Biomarcadores Farmacológicos , MicroRNAs/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Humanos , MicroRNAs/análise , Sensibilidade e Especificidade
4.
Hepatology ; 74(2): 973-986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872408

RESUMO

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Assuntos
Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatectomia , Hepatócitos , Humanos , Fígado/fisiologia , Fígado/cirurgia , Regeneração Hepática/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/administração & dosagem , Cultura Primária de Células
5.
Hepatology ; 70(5): 1732-1749, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31070244

RESUMO

Idiosyncratic drug-induced liver injury (DILI) is a rare, often difficult-to-predict adverse reaction with complex pathomechanisms. However, it is now evident that certain forms of DILI are immune-mediated and may involve the activation of drug-specific T cells. Exosomes are cell-derived vesicles that carry RNA, lipids, and protein cargo from their cell of origin to distant cells, and they may play a role in immune activation. Herein, primary human hepatocytes were treated with drugs associated with a high incidence of DILI (flucloxacillin, amoxicillin, isoniazid, and nitroso-sulfamethoxazole) to characterize the proteins packaged within exosomes that are subsequently transported to dendritic cells for processing. Exosomes measured between 50 and 100 nm and expressed enriched CD63. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) identified 2,109 proteins, with 608 proteins being quantified across all exosome samples. Data are available through ProteomeXchange with identifier PXD010760. Analysis of gene ontologies revealed that exosomes mirrored whole human liver tissue in terms of the families of proteins present, regardless of drug treatment. However, exosomes from nitroso-sulfamethoxazole-treated hepatocytes selectively packaged a specific subset of proteins. LC/MS-MS also revealed the presence of hepatocyte-derived exosomal proteins covalently modified with amoxicillin, flucloxacillin, and nitroso-sulfamethoxazole. Uptake of exosomes by monocyte-derived dendritic cells occurred silently, mainly through phagocytosis, and was inhibited by latrunculin A. An amoxicillin-modified 9-mer peptide derived from the exosomal transcription factor protein SRY (sex determining region Y)-box 30 activated naïve T cells from human leukocyte antigen A*02:01-positive human donors. Conclusion: This study shows that exosomes have the potential to transmit drug-specific hepatocyte-derived signals to the immune system and provide a pathway for the induction of drug hapten-specific T-cell responses.


Assuntos
Células Dendríticas/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Hepatócitos/efeitos dos fármacos , Sistema Imunitário/metabolismo , Transporte Proteico , Células Cultivadas , Hepatócitos/ultraestrutura , Humanos
6.
Arch Toxicol ; 93(2): 385-399, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30426165

RESUMO

The transcription factor NRF2, governed by its repressor KEAP1, protects cells against oxidative stress. There is interest in modelling the NRF2 response to improve the prediction of clinical toxicities such as drug-induced liver injury (DILI). However, very little is known about the makeup of the NRF2 transcriptional network and its response to chemical perturbation in primary human hepatocytes (PHH), which are often used as a translational model for investigating DILI. Here, microarray analysis identified 108 transcripts (including several putative novel NRF2-regulated genes) that were both downregulated by siRNA targeting NRF2 and upregulated by siRNA targeting KEAP1 in PHH. Applying weighted gene co-expression network analysis (WGCNA) to transcriptomic data from the Open TG-GATES toxicogenomics repository (representing PHH exposed to 158 compounds) revealed four co-expressed gene sets or 'modules' enriched for these and other NRF2-associated genes. By classifying the 158 TG-GATES compounds based on published evidence, and employing the four modules as network perturbation metrics, we found that the activation of NRF2 is a very good indicator of the intrinsic biochemical reactivity of a compound (i.e. its propensity to cause direct chemical stress), with relatively high sensitivity, specificity, accuracy and positive/negative predictive values. We also found that NRF2 activation has lower sensitivity for the prediction of clinical DILI risk, although relatively high specificity and positive predictive values indicate that false positive detection rates are likely to be low in this setting. Underpinned by our comprehensive analysis, activation of the NRF2 network is one of several mechanism-based components that can be incorporated into holistic systems toxicology models to improve mechanistic understanding and preclinical prediction of DILI in man.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Isotiocianatos/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , RNA Interferente Pequeno , Sulfóxidos
7.
NPJ Syst Biol Appl ; 4: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900006

RESUMO

Drug-induced liver injury (DILI) has become a major problem for patients and for clinicians, academics and the pharmaceutical industry. To date, existing hepatotoxicity test systems are only poorly predictive and the underlying mechanisms are still unclear. One of the factors known to amplify hepatotoxicity is the tumor necrosis factor alpha (TNFα), especially due to its synergy with commonly used drugs such as diclofenac. However, the exact mechanism of how diclofenac in combination with TNFα induces liver injury remains elusive. Here, we combined time-resolved immunoblotting and live-cell imaging data of HepG2 cells and primary human hepatocytes (PHH) with dynamic pathway modeling using ordinary differential equations (ODEs) to describe the complex structure of TNFα-induced NFκB signal transduction and integrated the perturbations of the pathway caused by diclofenac. The resulting mathematical model was used to systematically identify parameters affected by diclofenac. These analyses showed that more than one regulatory module of TNFα-induced NFκB signal transduction is affected by diclofenac, suggesting that hepatotoxicity is the integrated consequence of multiple changes in hepatocytes and that multiple factors define toxicity thresholds. Applying our mathematical modeling approach to other DILI-causing compounds representing different putative DILI mechanism classes enabled us to quantify their impact on pathway activation, highlighting the potential of the dynamic pathway model as a quantitative tool for the analysis of DILI compounds.

8.
Phys Med Biol ; 58(2): 373-91, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23257566

RESUMO

Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.


Assuntos
Diferenciação Celular/efeitos da radiação , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos da radiação , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Radiação Terahertz/efeitos adversos , Adesão Celular/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Humanos
9.
Biosens Bioelectron ; 23(3): 407-13, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17580113

RESUMO

Quartz crystal microbalance with dissipation monitoring (QCM-D) was used for continuous in-situ monitoring of cell attachment and growth of Streptococcus mutans as biofilms. Cell attachment and proliferation were monitored within an overnight period of 20 h. Biofilms generated using a 'continuous flow' method had a greater mass and were more dissipative (more viscoelastic) than those established using an 'attach and flow' strategy. Cell numbers (as colony forming units, c.f.u.) in biofilms formed inside the QCM-D device after a 2-h attachment phase and during a 20-h growth period could be related to frequency (f) changes. The percentage surface coverage on the QCM-D crystals by bacteria was estimated using the surface analysis features of the atomic force microscope and image analysis software. Both mean percentage coverage and c.f.u increased after growth of S. mutans. The energy losses displayed by the increases in the dissipative factor (D) indicated an increase in 'softness' of the attached cells. The ratio of D/f was used to provide information of the way in which viscoelasticity changed per unit mass. Flow conditions over the cells on the surface appeared to be important in creating biofilms of a greater complexity and stability and the QCM-D enabled properties of cells during attachment and binding, proliferation and removal to be monitored continuously.


Assuntos
Biofilmes , Técnicas Biossensoriais/métodos , Quartzo/química , Streptococcus mutans/fisiologia , Elasticidade , Microscopia de Força Atômica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...