Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 49: 53-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29598995

RESUMO

Assessment of ocular irritation potential is an international regulatory requirement in the safety evaluation of industrial and consumer products. None in vitro ocular irritation assays are capable of fully categorizing chemicals as stand-alone. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI consortium assessed the reliability of eight in vitro test methods and computational models as well as established a tiered-testing strategy. One of the selected assays was Bovine Corneal Opacity and Permeability (BCOP). In this project, the same corneas were used for measurement of opacity using the OP-KIT, the Laser Light-Based Opacitometer (LLBO) and for histopathological analysis. The results show that the accuracy of the BCOP OP-KIT in identifying Cat 1 chemicals was 73.8% while the accuracy was 86.3% for No Cat chemicals. BCOP OP-KIT false negative results were often related to an in vivo classification driven by conjunctival effects only. For the BCOP LLBO, the accuracy in identifying Cat 1 chemicals was 74.4% versus 88.8% for No Cat chemicals. The BCOP LLBO seems very promising for the identification of No Cat liquids but less so for the identification of solids. Histopathology as an additional endpoint to the BCOP test method does not reduce the false negative rate substantially for in vivo Cat 1 chemicals.

2.
Toxicol In Vitro ; 44: 122-133, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28673559

RESUMO

Assessment of ocular irritation potential is an international regulatory requirement in the safety evaluation of industrial and consumer products. None in vitro ocular irritation assays are capable of fully categorizing chemicals as stand-alone. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI consortium assessed the reliability of eight in vitro test methods and computational models as well as established a tiered-testing strategy. One of the selected assays was Bovine Corneal Opacity and Permeability (BCOP). In this project, the same corneas were used for measurement of opacity using the OP-KIT, the Laser Light-Based Opacitometer (LLBO) and for histopathological analysis. The results show that the accuracy of the BCOP OP-KIT in identifying Cat 1 chemicals was 73.8% while the accuracy was 86.3% for No Cat chemicals. BCOP OP-KIT false negative results were often related to an in vivo classification driven by conjunctival effects only. For the BCOP LLBO, the accuracy in identifying Cat 1 chemicals was 74.4% versus 88.8% for No Cat chemicals. The BCOP LLBO seems very promising for the identification of No Cat liquids but less so for the identification of solids. Histopathology as an additional endpoint to the BCOP test method does not reduce the false negative rate substantially for in vivo Cat 1 chemicals.


Assuntos
Alternativas aos Testes com Animais , Opacidade da Córnea/induzido quimicamente , Olho/efeitos dos fármacos , Irritantes/classificação , Irritantes/toxicidade , Permeabilidade/efeitos dos fármacos , Animais , Bovinos , Olho/metabolismo , Rotulagem de Produtos
3.
Toxicol Pathol ; 44(5): 636-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26940715

RESUMO

The evaluation of inhalation studies in monkeys is often hampered by the scarcity of published information on the relevant nasal anatomy and pathology. We examined nasal cavities of 114 control cynomolgus monkeys from 11 inhalation studies evaluated 2008 to 2013, in order to characterize and document the anatomic features and spontaneous pathology. Compared to other laboratory animals, the cynomolgus monkey has a relatively simple nose with 2 unbranched, dorsoventrally stacked turbinates, large maxillary sinuses, and a nasal septum that continues into the nasopharynx. The vomeronasal organ is absent, but nasopalatine ducts are present. Microscopically, the nasal epithelium is thicker than that in rodents, and the respiratory (RE) and transitional epithelium (TE) rest on a thick basal lamina. Generally, squamous epithelia and TE line the vestibule, RE, the main chamber and nasopharynx, olfactory epithelium, a small caudodorsal region, while TE is observed intermittently along the passages. Relatively high incidences of spontaneous pathology findings, some resembling induced lesions, were observed and included inflammation, luminal exudate, scabs, squamous and respiratory metaplasia or hyperplasia, mucous cell hyperplasia/metaplasia, and olfactory degeneration. Regions of epithelial transition were the most affected. This information is considered helpful in the histopathology evaluation and interpretation of inhalation studies in monkeys.


Assuntos
Macaca fascicularis/anatomia & histologia , Cavidade Nasal/anatomia & histologia , Animais , Feminino , Masculino , Doenças Nasais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...