Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574456

RESUMO

A vascular anastomosis is a critical surgical skill that involves connecting blood vessels. Traditional handsewn techniques can be challenging and resource intensive. To address these issues, we have developed a unique sutureless anastomotic device called Vaso-Lock. This intraluminal device connects free vascular ends using anchors to maintain traction and enable a rapid anastomosis. We tested the anastomotic capability of Vaso-Locks in a pig common carotid-internal jugular arteriovenous model. The use of Vaso-Lock allowed us to accomplish this procedure in less than 10 min, in contrast to the approximately 40 min required for a handsewn anastomosis. The Vaso-Lock effectively maintained patency for at least 6 weeks without causing significant tissue damage. Histological analysis revealed that the device was successfully incorporated into the arterial wall, promoting a natural healing process. Additionally, organ evaluations indicated no adverse effects from using the Vaso-Lock. Our findings support the safety and effectiveness of the Vaso-Lock for arteriovenous anastomosis in pigs, with potential applicability for translation to humans. Our novel sutureless device has the potential to advance surgical practice and improve patient outcomes.


Assuntos
Anastomose Cirúrgica , Animais , Suínos , Procedimentos Cirúrgicos sem Sutura/métodos , Anastomose Arteriovenosa/cirurgia , Grau de Desobstrução Vascular
2.
ACS Sens ; 2(1): 140-150, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28722434

RESUMO

Nitric oxide (NO)-releasing polymers have proven useful for improving the biocompatibility of in vivo glucose biosensors. Unfortunately, leaching of the NO donor from the polymer matrix remains a critical design flaw of NO-releasing membranes. Herein, a toolbox of NO-releasing silica nanoparticles (SNPs) was utilized to systematically evaluate SNP leaching from a diverse selection of biomedical-grade polyurethane sensor membranes. Glucose sensor analytical performance and NO-release kinetics from the sensor membranes were also evaluated as a function of particle and polyurethane (PU) chemistries. Particles modified with N-diazeniumdiolate NO donors were prone to leaching from PU membranes due to the zwitterionic nature of the NO donor modification. Leaching was minimized (<5% of the entrapped silica over 1 month) in low water uptake PUs. However, SNP modification with neutral S-nitrosothiol (RSNO) NO donors lead to biphasic leaching behavior. Particles with low alkanethiol content (<3.0 wt % sulfur) leached excessively from a hydrogel PU formulation (HP-93A-100 PU), while particles with greater degrees of thiol modification did not leach from any of the PUs tested. A functional glucose sensor was developed using an optimized HP-93A-100 PU membrane doped with RSNO-modified SNPs as the outer, glucose diffusion-limiting layer. The realized sensor design responded linearly to physiological concentrations of glucose (minimum 1-21 mM) over 2 weeks incubation in PBS and released NO at >0.8 pmol cm-2 s-1 for up to 6 days with no detectable (<0.6%) particle leaching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...