Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(1): e1010571, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36689473

RESUMO

Drosophila trachea is a premier model to study tube morphogenesis. After the formation of continuous tubes, tube maturation follows. Tracheal tube maturation starts with an apical secretion pulse that deposits extracellular matrix components to form a chitin-based apical luminal matrix (aECM). This aECM is then cleared and followed by the maturation of taenidial folds. Finally, air fills the tubes. Meanwhile, the cellular junctions are maintained to ensure tube integrity. Previous research has identified several key components (ER, Golgi, several endosomes) of protein trafficking pathways that regulate the secretion and clearance of aECM, and the maintenance of cellular junctions. The Osiris (Osi) gene family is located at the Triplo-lethal (Tpl) locus on chromosome 3R 83D4-E3 and exhibits dosage sensitivity. Here, we show that three Osi genes (Osi9, Osi15, Osi19), function redundantly to regulate adherens junction (AJ) maintenance, luminal clearance, taenidial fold formation, tube morphology, and air filling during tube maturation. The localization of Osi proteins in endosomes (Rab7-containing late endosomes, Rab11-containing recycling endosomes, Lamp-containing lysosomes) and the reduction of these endosomes in Osi mutants suggest the possible role of Osi genes in tube maturation through endosome-mediated trafficking. We analyzed tube maturation in zygotic rab11 and rab7 mutants, respectively, to determine whether endosome-mediated trafficking is required. Interestingly, similar tube maturation defects were observed in rab11 but not in rab7 mutants, suggesting the involvement of Rab11-mediated trafficking, but not Rab7-mediated trafficking, in this process. To investigate whether Osi genes regulate tube maturation primarily through the maintenance of Rab11-containing endosomes, we overexpressed rab11 in Osi mutant trachea. Surprisingly, no obvious rescue was observed. Thus, increasing endosome numbers is not sufficient to rescue tube maturation defects in Osi mutants. These results suggest that Osi genes regulate other aspects of endosome-mediated trafficking, or regulate an unknown mechanism that converges or acts in parallel with Rab11-mediated trafficking during tube maturation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Traqueia/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Proteínas de Drosophila/genética
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293135

RESUMO

Although all cells in the human body are made of the same DNA, these cells undergo differentiation and behave differently during development, through integration of external and internal stimuli via 'specific mechanisms.' Epigenetics is one such mechanism that comprises DNA/RNA, histone modifications, and non-coding RNAs that regulate transcription without changing the genetic code. The discovery of the first Polycomb mutant phenotype in Drosophila started the study of epigenetics more than 80 years ago. Since then, a considerable number of Polycomb Group (PcG) genes in Drosophila have been discovered to be preserved in mammals, including humans. PcG proteins exert their influence through gene repression by acting in complexes, modifying histones, and compacting the chromatin within the nucleus. In this article, we discuss how our knowledge of the PcG repression mechanism in Drosophila translates to human communicable disease research.


Assuntos
Doenças Transmissíveis , Proteínas de Drosophila , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Histonas/metabolismo , Epigênese Genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Doenças Transmissíveis/genética , RNA/metabolismo , Complexo Repressor Polycomb 1/genética , Mamíferos/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884534

RESUMO

COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced Drosophila COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The Drosophila trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using Drosophila trachea. Additionally, the timeline of structural damage, ROS, and inflammation can be studied in live organisms using fluorescently-tagged proteins. The related function of human COPD genes identified by GWAS can be screened using respective fly homologs. Finally, the Drosophila trachea can be used as a high-throughput drug screening platform to identify novel treatments for COPD. Therefore, Drosophila trachea is an excellent model that is complementary to rodent COPD models.


Assuntos
Modelos Animais de Doenças , Doença Pulmonar Obstrutiva Crônica/patologia , Fumaça/efeitos adversos , Traqueia/patologia , Animais , Drosophila , Humanos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Traqueia/efeitos dos fármacos
4.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802299

RESUMO

Selenium is an essential micronutrient with a wide range of biological effects in mammals. The inorganic form of selenium, selenite, is supplemented to relieve individuals with selenium deficiency and to alleviate associated symptoms. Additionally, physiological and supranutritional selenite have shown selectively higher affinity and toxicity towards cancer cells, highlighting their potential to serve as chemotherapeutic agents or adjuvants. At varying doses, selenite extensively regulates cellular signaling and modulates many cellular processes. In this study, we report the identification of Delta-Notch signaling as a previously uncharacterized selenite inhibited target. Our transcriptomic results in selenite treated primary mouse hepatocytes revealed that the transcription of Notch1, Notch2, Hes1, Maml1, Furin and c-Myc were all decreased following selenite treatment. We further showed that selenite can inhibit Notch1 expression in cultured MCF7 breast adenocarcinoma cells and HEPG2 liver carcinoma cells. In mice acutely treated with 2.5 mg/kg selenite via intraperitoneal injection, we found that Notch1 expression was drastically lowered in liver and kidney tissues by 90% and 70%, respectively. Combined, these results support selenite as a novel inhibitor of Notch signaling, and a plausible mechanism of inhibition has been proposed. This discovery highlights the potential value of selenite applied in a pathological context where Notch is a key drug target in diseases such as cancer, fibrosis, and neurodegenerative disorders.


Assuntos
Receptores Notch/metabolismo , Ácido Selenioso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selênio/metabolismo , Transcriptoma/efeitos dos fármacos
5.
Dev Dyn ; 248(6): 477-487, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30892787

RESUMO

BACKGROUND: Distinct tube size is critical for the function of human tubular organs such as the lung, vascular system, and kidney. Aberrant tube sizes can lead to devastating human illnesses, including polycystic kidney disease. The Drosophila trachea provides a premier genetic system to investigate the fundamental mechanisms that regulate tube size. RESULTS: Here we describe the function of a novel gene, apnoia, in tube-size regulation. apn encodes an apical membrane protein, Apnoia (Apn), with three helical transmembrane domains. Loss-of-function apn mutants show shorter-tube and air-filling defects in larval trachea, whereas there are no obvious defects in embryonic trachea. Conversely, overexpression of apn in trachea leads to significant tube over-elongation. We analyzed apical luminal matrix and cell polarity in these longer tubes. It is interesting to note that we observed normal establishment of cell polarity, whereas all luminal matrix components are significantly reduced. In addition, we observed that some matrix components are localized in cytoplasmic vesicles, suggesting secretion defects in apn overexpressing trachea. CONCLUSION: Taken together, these results strongly suggest the possibility that apn is directly or indirectly involved in vesicular trafficking to regulate tube size.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas de Membrana/genética , Morfogênese/genética , Traqueia/embriologia , Animais , Polaridade Celular , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Proteínas de Membrana/fisiologia , Mutação
6.
Biol Open ; 7(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185423

RESUMO

The Drosophila embryonic tracheal network is an excellent model to study tube size. The chitin-based apical luminal matrix and cell polarity are well known to regulate tube size in Drosophila trachea. Defects in luminal matrix and cell polarity lead to tube overexpansion. Here, we address the novel function of the rebuff (reb) gene, which encodes an evolutionarily conserved Smad-like protein. In reb mutants, tracheal tubes are moderately over-elongated. Despite the establishment of normal cell polarity, we observed significantly reduced apical luminal matrix in reb mutants. Among various luminal components, luminal Obstructor-A (ObstA) is drastically reduced. Interestingly, ObstA is localized in vesicle-like structures that are apically concentrated in reb mutants. To investigate the possibility that reb is involved in the endocytosis of ObstA, we analyzed the co-localization of ObstA and endocytic markers in reb mutants. We observed that ObstA is localized in late endosomes and recycling endosomes. This suggests that in reb mutant trachea, endocytosed ObstA is degraded or recycled back to the apical region. However, ObstA vesicles are retained in the apical region and are failed to be secreted to the lumen. Taken together, these results suggest one function of reb is regulating the endocytosis of luminal matrix components.

7.
Gene Expr Patterns ; 28: 87-94, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29548969

RESUMO

The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Development of the trachea consists of the well understood early branch specification and migration processes, and the less clear later branch maturation process including the apical membrane expansion, cytoskeleton rearrangement, luminal matrix clearance, and air-filling. We identified seven members of the Osiris (Osi) gene family with obvious tracheal expression in Drosophila. In addition, HA-tagged Osi proteins are highly concentrated in vesicle-like structures at and near the apical membrane. Osi proteins are predicted to contain endocytic signals and transmembrane domains. The localization of Osi proteins is consistent with these predictions. Interestingly, the Drosophila tracheal tube maturation process also occurs at the apical membrane. Taken together, the localization of Osi proteins suggest that these proteins are likely involved in tube maturation through vesicular trafficking or interacting with other apical membrane proteins.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Animais , Movimento Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Família Multigênica , Traqueia/citologia , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...