Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7057, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152109

RESUMO

Due to envelope differences between Gram-positive and Gram-negative bacteria, engineering precision bactericidal contractile nanomachines requires atomic-level understanding of their structures; however, only those killing Gram-negative bacteria are currently known. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with target envelope differences. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.


Assuntos
Antibacterianos , Bacteriocinas , Clostridioides difficile , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Bactérias Gram-Positivas/efeitos dos fármacos , Peptidoglicano/metabolismo , Peptidoglicano/química , Cristalografia por Raios X
2.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586031

RESUMO

Due to envelope differences between Gram-positive and Gram-negative bacteria1, engineering precision bactericidal contractile nanomachines2 requires atomic-level understanding of their structures; however, only those killing a Gram-negative bacterium are currently known3,4. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar protein linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with differences between their targeted envelopes. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire length of the diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.

3.
Can J Microbiol ; 67(12): 919-932, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34437812

RESUMO

Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is one of the major species isolated from infected chronic wounds. The multidrug resistance exhibited by P. aeruginosa and its ability to form biofilms that are difficult to eradicate, along with the rising cost of producing new antibiotics, has necessitated the search for alternatives to standard antibiotics. Pyocins are antimicrobial compounds produced by P. aeruginosa that protect themselves from their competitors. We synthesized and purified recombinant P. aeruginosa R2 pyocin and used it in an aqueous solution (rR2P) or formulated in polyethylene glycol (rR2PC) to treat P. aeruginosa-infected wounds. Clinical strains of P. aeruginosa were found to be sensitive (completely), partially sensitive, or resistant to rR2P. In the in vitro biofilm model, rR2P inhibited biofilm development by rR2P-sensitive isolates, while rR2PC eliminated partial biofilms formed by these strains in an in vitro wound biofilm model. In the murine model of excision wounds, and at 24 h post-infection, rR2PC application significantly reduced the bioburden of the clinical isolate BPI86. Application of rR2PC containing two glycoside hydrolase antibiofilm agents eliminated BPI86 from infected wounds. These results suggest that the topical application of rR2PC is an effective therapy for treating wounds infected with R2P-senstive P. aeruginosa strains.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Biofilmes , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Piocinas , Infecção dos Ferimentos/tratamento farmacológico
4.
Nature ; 580(7805): 658-662, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350467

RESUMO

R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics1-4. Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold1,2. Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of the (DNA-containing) T4 bacteriophage5. Here we report the atomic model of the complete R2 pyocin in its pre-contraction and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the following sequence of events during pyocin contraction: tail fibres trigger lateral dissociation of baseplate triplexes; the dissociation then initiates a cascade of events leading to sheath contraction; and this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.


Assuntos
Pseudomonas aeruginosa , Piocinas/química , Piocinas/metabolismo , Bacteriófago T4/química , Bacteriófago T4/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Genes Bacterianos/genética , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Especificidade por Substrato , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo
5.
Viruses ; 10(8)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110933

RESUMO

The R-type pyocins are high-molecular weight bacteriocins produced by some strains of Pseudomonas aeruginosa to specifically kill other strains of the same species. Structurally, the R-type pyocins are similar to "simple" contractile tails, such as those of phage P2 and Mu. The pyocin recognizes and binds to its target with the help of fibers that emanate from the baseplate structure at one end of the particle. Subsequently, the pyocin contracts its sheath and drives the rigid tube through the host cell envelope. This causes depolarization of the cytoplasmic membrane and cell death. The host cell surface-binding fiber is ~340 Å-long and is attached to the baseplate with its N-terminal domain. Here, we report the crystal structures of C-terminal fragments of the R1 and R2 pyocin fibers that comprise the distal, receptor-binding part of the protein. Both proteins are ~240 Å-long homotrimers in which slender rod-like domains are interspersed with more globular domains-two tandem knob domains in the N-terminal part of the fragment and a lectin-like domain at its C-terminus. The putative substrate binding sites are separated by about 100 Å, suggesting that binding of the fiber to the cell surface causes the fiber to adopt a certain orientation relative to the baseplate and this then triggers sheath contraction.


Assuntos
Pseudomonas aeruginosa/química , Piocinas/química , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Cátions , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ferro/química , Ferro/metabolismo , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sódio/química , Sódio/metabolismo , Especificidade por Substrato , Termodinâmica
6.
Sci Transl Med ; 9(406)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878013

RESUMO

There is a medical need for antibacterial agents that do not damage the resident gut microbiota or promote the spread of antibiotic resistance. We recently described a prototypic precision bactericidal agent, Av-CD291.2, which selectively kills specific Clostridium difficile strains and prevents them from colonizing mice. We have since selected two Av-CD291.2-resistant mutants that have a surface (S)-layer-null phenotype due to distinct point mutations in the slpA gene. Using newly identified bacteriophage receptor binding proteins for targeting, we constructed a panel of Avidocin-CDs that kills diverse C. difficile isolates in an S-layer sequence-dependent manner. In addition to bacteriophage receptor recognition, characterization of the mutants also uncovered important roles for S-layer protein A (SlpA) in sporulation, resistance to innate immunity effectors, and toxin production. Surprisingly, S-layer-null mutants were found to persist in the hamster gut despite a complete attenuation of virulence. These findings suggest antimicrobials targeting virulence factors dispensable for fitness in the host force pathogens to trade virulence for viability and would have clear clinical advantages should resistance emerge. Given their exquisite specificity for the pathogen, Avidocin-CDs have substantial therapeutic potential for the treatment and prevention of C. difficile infections.


Assuntos
Anti-Infecciosos/farmacologia , Clostridioides difficile/patogenicidade , Glicoproteínas de Membrana/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Bacteriocinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Contagem de Colônia Microbiana , Cricetinae , Farmacorresistência Bacteriana/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Imunidade Inata/efeitos dos fármacos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Fenótipo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/fisiologia , Toxinas Biológicas/metabolismo , Virulência/efeitos dos fármacos
7.
Annu Rev Virol ; 4(1): 453-467, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28961412

RESUMO

Many dsDNA bacterial viruses (bacteriophages/phages) have long tail structures that serve as organelles for DNA delivery to host targets. These structures, particularly those of Myoviridae and Siphoviridae phages, have an evolutionary relationship with other cellular biological entities that share the common function of penetrating the bacterial envelope. Among these are type VI secretion systems, insecticidal protein complexes, and bacteriocins. Phage tail-like bacteriocins (PTLBs) are widespread in bacteria, comprising different types that likely evolved independently. They can be divided into two major classes: the R-type PTLBs, which are related to contractile Myoviridae phage tails, and the F-type PTLBs, which are related to noncontractile Siphoviridae phage tails. This review provides an overview of the history, biology, and diversity of these entities and also covers recent efforts to utilize these potent bactericidal agents as human therapeutics against bacterial disease.


Assuntos
Bacteriocinas/uso terapêutico , Bacteriófagos/fisiologia , Proteínas da Cauda Viral , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Bacteriocinas/classificação , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Humanos , Myoviridae/química , Siphoviridae/química , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/fisiologia
8.
Virology ; 507: 263-266, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285722

RESUMO

SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C2 and C3 and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of the N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C2 and C3Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica.


Assuntos
Bacteriófagos/metabolismo , Salmonella enterica/virologia , Proteínas da Cauda Viral/metabolismo , Tipagem de Bacteriófagos , Bacteriófagos/genética , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Salmonella enterica/metabolismo , Sorogrupo , Proteínas da Cauda Viral/genética
9.
J Bacteriol ; 198(20): 2784-93, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27457717

RESUMO

UNLABELLED: Listeria monocytogenes is a significant foodborne human pathogen that can cause severe disease in certain high-risk individuals. L. monocytogenes is known to produce high-molecular-weight, phage tail-like bacteriocins, or "monocins," upon induction of the SOS system. In this work, we purified and characterized monocins and found them to be a new class of F-type bacteriocins. The L. monocytogenes monocin genetic locus was cloned and expressed in Bacillus subtilis, producing specifically targeted bactericidal particles. The receptor binding protein, which determines target cell specificity, was identified and engineered to change the bactericidal spectrum. Unlike the F-type pyocins of Pseudomonas aeruginosa, which are related to lambda-like phage tails, monocins are more closely related to TP901-1-like phage tails, structures not previously known to function as bacteriocins. Monocins therefore represent a new class of phage tail-like bacteriocins. It appears that multiple classes of phage tails and their related bacteriocins have coevolved separately in parallel. IMPORTANCE: Phage tail-like bacteriocins (PTLBs) are structures widespread among the members of the bacterial kingdom that are evolutionarily related to the DNA delivery organelles of phages (tails). We identified and characterized "monocins" of Listeria monocytogenes and showed that they are related to the tail structures of TP901-1-like phages, structures not previously known to function as bacteriocins. Our results show that multiple types of envelope-penetrating machines have coevolved in parallel to function either for DNA delivery (phages) or as membrane-disrupting bacteriocins. While it has commonly been assumed that these structures were coopted from phages, we cannot rule out the opposite possibility, that ancient phages coopted complex bacteriocins from the cell, which then underwent adaptations to become efficient at translocating DNA.


Assuntos
Bacteriocinas/química , Bacteriófagos/metabolismo , Listeria monocytogenes/metabolismo , Proteínas da Cauda Viral/química , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriófagos/química , Bacteriófagos/genética , Evolução Biológica , Listeria monocytogenes/química , Listeria monocytogenes/genética , Peso Molecular , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo
10.
mBio ; 6(2)2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25805733

RESUMO

UNLABELLED: Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin ("diffocin") from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. IMPORTANCE: Treatment and prevention strategies for bacterial diseases rely heavily on traditional antibiotics, which impose strong selection for resistance and disrupt protective microbiota. One consequence has been an upsurge of opportunistic pathogens, such as Clostridium difficile, that exploit antibiotic-induced disruptions in gut microbiota to proliferate and cause life-threatening diseases. We have developed alternative agents that utilize contractile bactericidal protein complexes (R-type bacteriocins) to kill specific C. difficile pathogens. Efficacy in a preclinical animal study indicates these molecules warrant further development as potential prophylactic agents to prevent C. difficile infections in humans. Since these agents do not detectably alter the indigenous gut microbiota or colonization resistance in mice, we believe they will be safe to administer as a prophylactic to block transmission in high-risk environments without rendering patients susceptible to enteric infection after cessation of treatment.


Assuntos
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/prevenção & controle , Trato Gastrointestinal/microbiologia , Administração Oral , Animais , Antibacterianos/administração & dosagem , Bacteriocinas/administração & dosagem , Feminino , Masculino , Camundongos Endogâmicos C57BL
11.
Nat Struct Mol Biol ; 22(5): 377-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822993

RESUMO

R-type pyocins are representatives of contractile ejection systems, a class of biological nanomachines that includes, among others, the bacterial type VI secretion system (T6SS) and contractile bacteriophage tails. We report atomic models of the Pseudomonas aeruginosa precontraction pyocin sheath and tube, and the postcontraction sheath, obtained by cryo-EM at 3.5-Å and 3.9-Å resolutions, respectively. The central channel of the tube is negatively charged, in contrast to the neutral and positive counterparts in T6SSs and phage tails. The sheath is interwoven by long N- and C-terminal extension arms emanating from each subunit, which create an extensive two-dimensional mesh that has the same connectivity in the extended and contracted state of the sheath. We propose that the contraction process draws energy from electrostatic and shape complementarities to insert the inner tube through bacterial cell membranes to eventually kill the bacteria.


Assuntos
Antibacterianos/química , Proteínas Contráteis/ultraestrutura , Nanotubos/química , Pseudomonas aeruginosa/patogenicidade , Piocinas/química , Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Bacteriófagos/química , Membrana Celular/metabolismo , Proteínas Contráteis/química , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Estrutura Secundária de Proteína
12.
J Bacteriol ; 194(22): 6240-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22984261

RESUMO

Clostridium difficile causes one of the leading nosocomial infections in developed countries, and therapeutic choices are limited. Some strains of C. difficile produce phage tail-like particles upon induction of the SOS response. These particles have bactericidal activity against other C. difficile strains and can therefore be classified as bacteriocins, similar to the R-type pyocins of Pseudomonas aeruginosa. These R-type bacteriocin particles, which have been purified from different strains, each have a different C. difficile-killing spectrum, with no one bacteriocin killing all C. difficile isolates tested. We have identified the genetic locus of these "diffocins" (open reading frames 1359 to 1376) and have found them to be common among the species. The entire diffocin genetic locus of more than 20 kb was cloned and expressed in Bacillus subtilis, and this resulted in production of bactericidal particles. One of the interesting features of these particles is a very large structural protein of ~200 kDa, the product of gene 1374. This large protein determines the killing spectrum of the particles and is likely the receptor-binding protein. Diffocins may provide an alternate bactericidal agent to prevent or treat infections and to decolonize individuals who are asymptomatic carriers.


Assuntos
Bacteriocinas/metabolismo , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Anaerobiose , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacteriocinas/genética , Técnicas Bacteriológicas , Mapeamento Cromossômico , Cromossomos Bacterianos , Clonagem Molecular , Clostridioides difficile/genética , Clostridioides difficile/ultraestrutura , Genoma Bacteriano , Resposta SOS em Genética/fisiologia
13.
PLoS One ; 7(3): e33637, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432037

RESUMO

A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genome sequencing and public availability of these data from the German outbreak strain allowed us to identify an O-antigen-specific bacteriophage tail spike protein encoded in the genome. We synthesized this gene and fused it to the tail fiber gene of an R-type pyocin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that the tail fiber fusion was incorporated into the bacteriocin structure. The resulting particles have bactericidal activity specifically against E. coli strains that produce the O104 lipopolysaccharide antigen, including the outbreak strain. This O-antigen tailspike-R-type pyocin strategy provides a platform to respond rapidly to emerging pathogens upon the availability of the pathogen's genome sequence.


Assuntos
Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genoma Bacteriano/genética , Sequência de Bases , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Eletroforese em Gel de Poliacrilamida , Lipopolissacarídeos/isolamento & purificação , Mutação/genética , Coloração pela Prata
14.
Antimicrob Agents Chemother ; 55(12): 5469-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947394

RESUMO

AvR2-V10.3 is an engineered R-type pyocin that specifically kills Escherichia coli O157, an enteric pathogen that is a major cause of food-borne diarrheal disease. New therapeutics to counteract E. coli O157 are needed, as currently available antibiotics can exacerbate the consequences of infection. We show here that orogastric administration of AvR2-V10.3 can prevent or ameliorate E. coli O157:H7-induced diarrhea and intestinal inflammation in an infant rabbit model of infection when the compound is administered either in a postexposure prophylactic regimen or after the onset of symptoms. Notably, administration of AvR2-V10.3 also reduces bacterial carriage and fecal shedding of this pathogen. Our findings support the further development of pathogen-specific R-type pyocins as a way to treat enteric infections.


Assuntos
Antibacterianos/uso terapêutico , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Escherichia coli O157/efeitos dos fármacos , Piocinas/uso terapêutico , Animais , Animais Recém-Nascidos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Diarreia/microbiologia , Diarreia/fisiopatologia , Modelos Animais de Doenças , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/patogenicidade , Fezes/microbiologia , Engenharia Genética/métodos , Humanos , Piocinas/administração & dosagem , Piocinas/farmacologia , Coelhos , Resultado do Tratamento
15.
Antimicrob Agents Chemother ; 53(7): 3074-80, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19349519

RESUMO

Some strains of Pseudomonas aeruginosa produce R-type pyocins, which are high-molecular-weight phage tail-like protein complexes that have bactericidal activity against other Pseudomonas strains. These particles recognize and bind to bacterial surface structures via tail fibers, their primary spectrum determinant. R-type pyocins kill the cell by contracting a sheath-like structure and inserting their hollow core through the cell envelope, resulting in dissipation of the cellular membrane potential. We have retargeted an R-type pyocin to Escherichia coli O157:H7 by fusing a tail spike protein from an O157-specific phage, phiV10, to the pyocin tail fiber. The phiV10 tail spike protein recognizes and degrades the O157 lipopolysaccharide. This engineered pyocin, termed AVR2-V10, is sensitive and specific, killing 100% of diverse E. coli O157:H7 isolates but no other serotypes tested. AVR2-V10 can kill E. coli O157:H7 on beef surfaces, making it a candidate agent for the elimination of this pathogen from food products. All rare AVR2-V10-resistant mutants isolated and examined have lost the ability to produce the O157 antigen and are expected to have compromised virulence. In addition, E. coli O157:H7 exposed to and killed by AVR2-V10 do not release Shiga toxin, as is often the case with many antibiotics, suggesting potential therapeutic applications. The demonstration that a novel R-type pyocin can be created in the laboratory by fusing a catalytic tail spike from the family Podoviridae to a tail fiber of a member of the family Myoviridae is evidence that the plasticity observed among bacteriophage tail genes can, with modern molecular techniques, be exploited to produce nonnatural, targeted antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Microbiologia de Alimentos , Piocinas/farmacologia , Animais , Bovinos , Modelos Biológicos , Toxina Shiga/farmacologia
16.
Appl Environ Microbiol ; 74(12): 3868-76, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18441117

RESUMO

R-type pyocins are high-molecular-weight bacteriocins that resemble bacteriophage tail structures and are produced by some Pseudomonas aeruginosa strains. R-type pyocins kill by dissipating the bacterial membrane potential after binding. The high-potency, single-hit bactericidal kinetics of R-type pyocins suggest that they could be effective antimicrobials. However, the limited antibacterial spectra of natural R-type pyocins would ultimately compromise their clinical utility. The spectra of these protein complexes are determined in large part by their tail fibers. By replacing the pyocin tail fibers with tail fibers of Pseudomonas phage PS17, we changed the bactericidal specificity of R2 pyocin particles to a different subset of P. aeruginosa strains, including some resistant to PS17 phage. We further extended this idea by fusing parts of R2 tail fibers with parts of tail fibers from phages that infect other bacteria, including Escherichia coli and Yersinia pestis, changing the killing spectrum of pyocins from P. aeruginosa to the bacterial genus, species, or strain that serves as a host for the donor phage. The assembly of active R-type pyocins requires chaperones specific for the C-terminal portion of the tail fiber. Natural and retargeted R-type pyocins exhibit narrow bactericidal spectra and thus can be expected to cause little collateral damage to the healthy microbiotae and not to promote the horizontal spread of multidrug resistance among bacteria. Engineered R-type pyocins may offer a novel alternative to traditional antibiotics in some infections.


Assuntos
Antibacterianos/farmacologia , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Piocinas/farmacologia , Fusão Gênica Artificial , Bacteriófagos/genética , Colífagos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/virologia , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/farmacologia , Recombinação Genética , Análise de Sequência de DNA , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/virologia
17.
Antimicrob Agents Chemother ; 52(5): 1647-52, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18332164

RESUMO

R-type pyocins are high-molecular-weight bacteriocins carried within the chromosomes of some bacterial species, such as Pseudomonas aeruginosa, and almost certainly evolved from lysogenic bacteriophages of the Myoviridae family. They contain no head structures and no DNA and are used as defense systems, usually against other strains of the same bacterial species. They bind with their tail fibers to targeted bacterial surface molecules and then kill by inserting a core or needle that dissipates the bacterial membrane potential. Their mechanism of action, high bactericidal potency (one pyocin particle can kill one bacterium), and focused spectrum suggest that R-type pyocins could be developed as antibacterial agents. In a lethal mouse peritonitis model, submicrogram quantities of pyocin prevent death from 90% lethal dose inocula of a pyocin-sensitive, clinical isolate of P. aeruginosa. We show here the dose response curves, treatment windows, or periods of response after infection and the several-log-unit acute reduction of bacterial load in blood and spleen samples, suggesting that R-type pyocins have several characteristics that one would expect from an effective therapeutic.


Assuntos
Peritonite/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Piocinas/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Camundongos , Peritonite/microbiologia
18.
J Mol Biol ; 371(3): 836-49, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17585937

RESUMO

External polysaccharides of many pathogenic bacteria form capsules protecting the bacteria from the animal immune system and phage infection. However, some bacteriophages can digest these capsules using glycosidases displayed on the phage particle. We have utilized cryo-electron microscopy to determine the structures of phages K1E and K1-5 and thereby establish the mechanism by which these phages attain and switch their host specificity. Using a specific glycosidase, both phages penetrate the capsule and infect the neuroinvasive human pathogen Escherichia coli K1. In addition to the K1-specific glycosidase, each K1-5 particle carries a second enzyme that allows it to infect E. coli K5, whose capsule is chemically different from that of K1. The enzymes are organized into a multiprotein complex attached via an adapter protein to the virus portal vertex, through which the DNA is ejected during infection. The structure of the complex suggests a mechanism for the apparent processivity of degradation that occurs as the phage drills through the polysaccharide capsule. The enzymes recognize the adapter protein by a conserved N-terminal sequence, providing a mechanism for phages to acquire different enzymes and thus to evolve new host specificities.


Assuntos
Cápsulas Bacterianas/metabolismo , Bacteriófagos/química , Evolução Biológica , Escherichia coli/virologia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Capsídeo/química , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/química , Genoma Viral , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Eletricidade Estática , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Vírion/química
19.
J Bacteriol ; 187(24): 8499-503, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16321955

RESUMO

Bacteriophage K1F specifically infects Escherichia coli strains that produce the K1 polysaccharide capsule. Like several other K1 capsule-specific phages, K1F encodes an endo-neuraminidase (endosialidase) that is part of the tail structure which allows the phage to recognize and degrade the polysaccharide capsule. The complete nucleotide sequence of the K1F genome reveals that it is closely related to bacteriophage T7 in both genome organization and sequence similarity. The most striking difference between the two phages is that K1F encodes the endosialidase in the analogous position to the T7 tail fiber gene. This is in contrast with bacteriophage K1-5, another K1-specific phage, which encodes a very similar endosialidase which is part of a tail gene "module" at the end of the phage genome. It appears that diverse phages have acquired endosialidase genes by horizontal gene transfer and that these genes or gene products have adapted to different genome and virion architectures.


Assuntos
Colífagos/genética , Escherichia coli/virologia , Genoma Viral , Podoviridae/genética , Bacteriófago T7/genética , Sequência de Bases , Colífagos/fisiologia , Evolução Molecular , Transferência Genética Horizontal , Dados de Sequência Molecular , Neuraminidase/genética , Podoviridae/fisiologia , Análise de Sequência de DNA , Homologia de Sequência , Sintenia , Replicação Viral
20.
Appl Environ Microbiol ; 71(8): 4872-4, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085886

RESUMO

Escherichia coli strains that produce the K1 polysaccharide capsule have long been associated with pathogenesis. This capsule is believed to increase the cell's invasiveness, allowing the bacteria to avoid phagocytosis and inactivation by complement. It is also recognized as a receptor by some phages, such as K1F and K1-5, which have virion-associated enzymes that degrade the polysaccharide. In this report we show that expression of the K1 capsule in E. coli physically blocks infection by T7, a phage that recognizes lipopolysaccharide as the primary receptor. Enzymatic removal of the K1 antigen from the cell allows T7 to adsorb and replicate. This observation suggests that the capsule plays an important role as a defense against some phages that recognize structures beneath it and that the K1-specific phages evolved to counter this physical barrier.


Assuntos
Antígenos de Bactérias/metabolismo , Cápsulas Bacterianas/metabolismo , Bacteriófago T7/patogenicidade , Escherichia coli/virologia , Polissacarídeos Bacterianos/metabolismo , Bacteriófago T7/fisiologia , Ensaio de Placa Viral , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...