Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32001551

RESUMO

Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Adulto , Animais , Dopamina , Feminino , Humanos , Hipóxia , Neurônios Motores , Gravidez , Peixe-Zebra
2.
Neurotoxicology ; 66: 10-21, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510177

RESUMO

Exposure to nerve agents (NAs) and other organophosphates (OPs) can initiate seizures that rapidly progress to status epilepticus (SE). While the electrographic and neuropathological sequelae of SE evoked by NAs and OPs have been characterized in adult rodents, they have not been adequately investigated in immature animals. In this study postnatal day (PND) 14, 21 and 28 rat pups, along with PND70 animals as adult controls, were exposed to NAs (sarin, VX) or another OP (diisopropylfluorophosphate, DFP). We then evaluated behavioral and electrographic (EEG) correlates of seizure activity, and performed neuropathology using Fluoro-Jade B. Although all immature rats exhibited behaviors that are often characterized as seizures, the incidence, duration, and severity of the electrographic seizure activity were age-dependent. No (sarin and VX) or brief (DFP) EEG seizure activity was evoked in PND14 rats, while SE progressively increased in severity as a function of age in PND21, 28 and 70 animals. Fluoro-Jade B staining was observed in multiple brain regions of animals that exhibited prolonged seizure activity. Neuronal injury in PND14 animals treated with DFP was lower than in older animals and absent in rats exposed to sarin or VX. In conclusion, we found that NAs and an OP provoked robust SE and neuronal injury similar to adults in PND21 and PND28, but not in PND14, rat pups. Convulsive behaviors were often present independent of EEG seizures and were unaccompanied by neuronal damage. These differential responses should be considered when investigating medical countermeasures for NA and OP exposure in pediatric populations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Isoflurofato/toxicidade , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Masculino , Compostos Organotiofosforados/toxicidade , Sarina/toxicidade
3.
J Pept Sci ; 16(9): 486-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20645434

RESUMO

The neuropeptides galanin (GAL), neuropeptide Y (NPY) or neurotensin (NT) exhibit anticonvulsant activities mediated by their respective receptors in the brain. To transform these peptides into potential neurotherapeutics, their systemic bioavailability and metabolic stability must be improved. Our recent studies with GAL analogs suggested that an introduction of lipoamino acids in the context of oligo-Lys residues (lipidization-cationization motif) significantly increases their penetration into the brain, yielding potent antiepileptic compounds. Here, we describe an extension of this strategy to NPY and NT. Rationally designed analogs of NPY and NT containing the lipidization-cationization motif were chemically synthesized and their physicochemical and pharmacological properties were characterized. The analogs NPY-BBB2 and NT-BBB1 exhibited increased serum stability, possessed log D > 1.1, retained high affinities toward their native receptors and produced potent antiseizure activities in animal models of epilepsy following intraperitoneal administration. Our results suggest that the combination of lipidization and cationization may be an effective strategy for improving systemic bioavailability and metabolic stability of various neuroactive peptides.


Assuntos
Anticonvulsivantes/farmacologia , Neuropeptídeo Y/análogos & derivados , Neurotensina/análogos & derivados , Animais , Anticonvulsivantes/síntese química , Barreira Hematoencefálica/efeitos dos fármacos , Cátions/química , Epilepsia/tratamento farmacológico , Lipídeos/química , Neuropeptídeo Y/síntese química , Neuropeptídeo Y/farmacologia , Neurotensina/síntese química , Neurotensina/farmacologia , Ratos , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neurotensina/metabolismo
4.
Neurotherapeutics ; 6(2): 372-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19332332

RESUMO

The endogenous neuropeptide galanin and its associated receptors galanin receptor 1 and galanin receptor 2 are highly localized in brain limbic structures and play an important role in the control of seizures in animal epilepsy models. As such, galanin receptors provide an attractive target for the development of novel anticonvulsant drugs. Our efforts to engineer galanin analogs that can penetrate the blood-brain-barrier and suppress seizures, yielded NAX 5055 (Gal-B2), a systemically-active analog that maintains low nanomolar affinity for galanin receptors and displays a potent anticonvulsant activity. In this report, we show that NAX 5055 is active in three models of epilepsy: 1) the Frings audiogenic seizure-susceptible mouse, 2) the mouse corneal kindling model of partial epilepsy, and 3) the 6 Hz model of pharmacoresistant epilepsy. NAX 5055 was not active in the traditional maximal electroshock and subcutaneous pentylenetetrazol seizure models. Unlike most antiepileptic drugs, NAX 5055 showed high potency in the 6 Hz model of epilepsy across all three different stimulation currents; i.e., 22, 32 and 44 mA, suggesting a potential use in the treatment of pharmacoresistant epilepsy. Furthermore, NAX 5055 was found to be biologically active after intravenous, intraperitoneal, and subcutaneous administration, and efficacy was associated with a linear pharmacokinetic profile. The results of the present investigation suggest that NAX 5055 is a first-in-class neurotherapeutic for the treatment of epilepsy in patients refractory to currently approved antiepileptic drugs.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Galanina/análogos & derivados , Animais , Anticonvulsivantes/química , Modelos Animais de Doenças , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...