Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26301479

RESUMO

This study describes an analytical method for bioaffinity and selectivity assessment of CXCR2 antagonists and their metabolites. The method is based on liquid chromatographic separation (LC) of metabolic mixtures followed by parallel mass spectrometry (MS) identification and bioaffinity determination. The bioaffinity is assessed using radioligand binding assays in 96-well plates after at-line nanofractionation. The described method was optimized for chemokines and low-molecular weight CXCR2 ligands. The limits of detection (LODs; injected amounts) for MK-7123, a high affinity binder to both CXCR1 and CXCR2 receptors belonging to the diaminocyclobutendione chemical class, were 40pmol in CXCR1 binding and 8pmol in CXCR2 binding. For CXCL8, the LOD was 5pmol in both binding assays. A control compound was always taken along with each bioassay plate as triplicate dose-response curve. For MK-7123, the calculated IC50 values were 314±59nM (CXCR1 binding) and 38±11nM (CXCR2 binding). For CXCL8, the IC50 values were 6.9±1.4nM (CXCR1 binding) and 2.7±1.3nM (CXCR2 binding). After optimization, the method was applied to the analysis of metabolic mixtures of eight LMW CXCR2 antagonists generated by incubation with pig liver microsomes. Moreover, metabolic profiling of the MK-7123 compound was described using the developed method. Three bioactive metabolites were found, two of which were (partially) identified. This method is suitable for bioaffinity and selectivity assessment of mixtures targeting the CXCR2. In contrary to conventional LC-MS based metabolic profiling studies done at the early lead discovery stage, additional qualitative bioactivity information of drug metabolites is obtained with the method described.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Células HEK293 , Humanos , Ligantes , Limite de Detecção
2.
Anal Bioanal Chem ; 407(23): 7067-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164305

RESUMO

Chemokine receptors belong to the class of G protein-coupled receptors and are important in the host defense against infections and inflammation. However, aberrant chemokine signaling is linked to different disorders such as cancer, central nervous system and immune disorders, and viral infections [Scholten DJ et al. (2012) Br J Pharmacol 165(6):1617-1643]. Modulating the chemokine receptor function provides new ways of targeting specific diseases. Therefore, discovery and development of drugs targeting chemokine receptors have received considerable attention from the pharmaceutical industry in the past decade. Along with that, the determination of bioactivities of individual metabolites derived from lead compounds towards chemokine receptors is crucial for drug selectivity, pharmacodynamics, and potential toxicity issues. Therefore, advanced analytical methodologies are in high demand. This study is aimed at the optimization of a new analytical method for metabolic profiling with parallel bioaffinity assessment of CXCR3 ligands of the azaquinazolinone and piperazinyl-piperidine class and their metabolites. The method is based on mass spectrometric (MS) identification after liquid chromatographic (LC) separation of metabolic mixtures. The bioaffinity assessment is performed "at-line" via high-resolution nanofractionation onto 96-well plates allowing direct integration of radioligand binding assays. This new method enables identification of metabolites from lead compounds with associated estimation of their individual bioaffinity. Moreover, the identification of the metabolite structures via accurate mass measurements and MS(2) allows the identification of liable metabolic "hotspots" for further lead optimization. The efficient combination of chemokine receptor ligand binding assays with analytical techniques, involving nanofractionation as linking technology, allows implementation of comprehensive metabolic profiling in an early phase of the drug discovery process.


Assuntos
Quimiocinas/química , Quimiocinas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Receptores CXCR3/química , Receptores CXCR3/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Células HEK293 , Humanos , Mapeamento de Interação de Proteínas/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Mol Pharmacol ; 87(4): 639-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25576486

RESUMO

Chemokine receptor CXCR3 has attracted much attention, as it is thought to be associated with a wide range of immune-related diseases. As such, several small molecules with different chemical structures targeting CXCR3 have been discovered. Despite limited clinical success so far, these compounds serve as interesting tools for investigating receptor activation and antagonism. Accumulating evidence suggests that many of these compounds are allosteric modulators for CXCR3. One feature of allosteric ligands is that the magnitude of the mediated allosteric effect is dependent on the orthosteric probe that is used. Consequently, there is a risk for incorrect assessment of affinity for allosteric modulators with orthosteric radioligands, which has so far been the most applied approach for chemokine receptors. Therefore, we aimed to use a small-molecule allosteric ligand from the piperazinyl-piperidine class, also known as VUF11211 [(S)-5-chloro-6-(4-(1-(4-chlorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)-N-ethylnicotinamide]. VUF11211 acts as an inverse agonist at a constitutively active mutant of CXCR3. Radiolabeling of VUF11211 gave [(3)H]VUF11211, which in radioligand binding studies shows high affinity for CXCR3 (Kd = 0.65 nM) and reasonably fast association (kon= 0.03 minute(-1)nM(-1)) and dissociation kinetics (koff = 0.02 minute(-1)). The application of the [(3)H]VUF11211 to assess CXCR3 pharmacology was validated with diverse classes of CXCR3 compounds, including both antagonists and agonists, as well as VUF11211 analogs. Interestingly, VUF11211 seems to bind to a different population of CXCR3 conformations compared with the CXCR3 agonists CXC chemokine ligand 11 (CXCL11), VUF11418 [1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-((2'-iodobiphenyl-4-yl)methyl)-N,N-dimethylmethanaminium Iodide], and VUF10661 [N-(6-amino-1-(2,2-diphenylethylamino)-1-oxohexan-2-yl)-2-(4-oxo-4-phenylbutanoyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide]. These findings, taken together, indicate that this allosteric inverse agonist radioligand for CXCR3 may facilitate the discovery, characterization, and optimization of allosteric modulators for the chemokine receptor CXCR3.


Assuntos
Niacinamida/análogos & derivados , Piperazinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptores CXCR3/metabolismo , Regulação Alostérica , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Mutação , Niacinamida/farmacologia , Ensaio Radioligante , Receptores CXCR3/genética , Trítio
4.
Mol Pharmacol ; 85(1): 116-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24174496

RESUMO

CXC chemokine receptor CXCR3 and/or its main three ligands CXCL9, CXCL10, and CXCL11 are highly upregulated in a variety of diseases. As such, considerable efforts have been made to develop small-molecule receptor CXCR3 antagonists, yielding distinct chemical classes of antagonists blocking binding and/or function of CXCR3 chemokines. Although it is suggested that these compounds bind in an allosteric fashion, thus far no evidence has been provided regarding the molecular details of their interaction with CXCR3. Using site-directed mutagenesis complemented with in silico homology modeling, we report the binding modes of two high-affinity CXCR3 antagonists of distinct chemotypes: VUF11211 [(S)-5-chloro-6-(4-(1-(4-chlorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)-N-ethylnicotinamide] (piperazinyl-piperidine) with a rigid elongated structure containing two basic groups and NBI-74330 [(R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-2-(4-fluoro-3-(trifluoromethyl)phenyl)-N-(pyridin-3-ylmethyl)acetamide] (8-azaquinazolinone) without any basic group. Here we show that NBI-74330 is anchored in the transmembrane minor pocket lined by helices 2 (W2.60, D2.63), 3 (F3.32), and 7 (S7.39, Y7.43), whereas VUF11211 extends from the minor pocket into the major pocket of the transmembrane domains, located between residues in helices 1 (Y1.39), 2 (W2.60), 3 (F3.32), 4 (D4.60), 6 (Y6.51), and 7 (S7.39, Y7.43). Mutation of these residues did not affect CXCL11 binding significantly, confirming the allosteric nature of the interaction of these small molecules with CXCR3. Moreover, the model derived from our in silico-guided studies fits well with the already published structure-activity relationship data on these ligands. Altogether, in this study, we show overlapping, yet different binding sites for two high-affinity CXCR3 antagonists, which offer new opportunities for the structure-based design of allosteric modulators for CXCR3.


Assuntos
Acetamidas/química , Niacinamida/análogos & derivados , Piperazinas/química , Pirimidinas/química , Receptores CXCR3/antagonistas & inibidores , Acetamidas/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Células HEK293 , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Niacinamida/química , Niacinamida/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Ensaio Radioligante , Receptores CXCR3/genética
5.
J Med Chem ; 55(23): 10572-83, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23150943

RESUMO

The G protein-coupled chemokine receptor CXCR3 plays a role in numerous inflammatory events. The endogenous ligands for the chemokine receptors are peptides, but in this study we disclose small-molecule ligands that are able to activate CXCR3. A class of biaryl-type compounds that is assembled by convenient synthetic routes is described as a new class of CXCR3 agonists. Intriguingly, structure-activity relationship and structure-function relationship studies reveal that subtle chemical modifications on the outer aryl ring (e.g., either the size or position of a halogen atom) result in a full spectrum of agonist efficacies on CXCR3. Quantum mechanics calculations and nuclear Overhauser effect spectroscopy NMR studies suggest that the biaryl dihedral angle and the electronic nature of ortho-substituents play an important role in determining agonist efficacies. Compounds 38 (VUF11222) and 39 (VUF11418) are the first reported nonpeptidomimetic agonists on CXCR3, rendering them highly useful chemical tools for detailed assessment of CXCR3 activation as well as for studying downstream CXCR3 signaling.


Assuntos
Receptores CXCR3/química , Receptores de Peptídeos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Relação Estrutura-Atividade
6.
Eur J Med Chem ; 51: 184-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22424612

RESUMO

The chemokine receptor CXCR7 is an atypical G protein-coupled receptor as it preferentially signals through the ß-arrestin pathway rather than through G proteins. CXCR7 is thought to be of importance in cancer and the development of CXCR7-targeting ligands is of huge importance to further elucidate the pharmacology and the therapeutic potential of CXCR7. In the present study, we synthesized 24 derivatives based on a compound scaffold patented by Chemocentryx and obtained CXCR7 ligands with pK(i) values ranging from 5.3 to 8.1. SAR studies were supported by computational 3D Fingerprint studies, revealing several important affinity descriptors. Two key compounds (29 and 30, VUF11207 and VUF11403) were found to be high-potency ligands that induce recruitment of ß-arrestin2 and subsequent internalization of CXCR7, making them important tool compounds in future CXCR7 research.


Assuntos
Amidas/química , Técnicas de Química Sintética , Modelos Moleculares , Receptores CXCR/agonistas , Estireno/química , Estireno/farmacologia , Células HEK293 , Humanos , Conformação Molecular , Relação Quantitativa Estrutura-Atividade , Estireno/síntese química
7.
PLoS One ; 7(3): e34192, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457824

RESUMO

The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gα(i)-proteins. CXCR7 has recently been shown to interact with ß-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only ß-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process.


Assuntos
Receptores CXCR/metabolismo , Ubiquitinação , Linhagem Celular , Humanos , Transporte Proteico
8.
Biochem Biophys Res Commun ; 419(2): 412-8, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22349504

RESUMO

The chemokine receptor CXCR3 is a G-protein-coupled receptor that signals through the Gα(i) class of heterotrimeric G-proteins. CXCR3 is highly expressed on activated T cells and has been proposed to be a therapeutic target in autoimmune disease. CXCR3 is activated by the chemokines CXCL9, CXCL10 and CXCL11. CXCR3 signaling properties in response to CXCL10, CXCL11 and the synthetic agonist VUF10661 have previously been evaluated using conventional endpoint assays. In the present study, label-free impedance measurements were used to characterize holistic responses of CXCR3-expressing cells to stimulation with chemokines and VUF10661 in real time and to compare these responses with both G-protein and non-G-protein (ß-arrestin2) mediated responses. Differences in response kinetics were apparent between the chemokines and VUF10661. Moreover, CXCR3-independent effects could be distinguished from CXCR3-specific responses with the use of the selective CXCR3 antagonist NBI-74330 and the Gα(i) inhibitor pertussis toxin. By comparing the various responses, we observed that CXCL9 is a biased CXCR3 agonist, stimulating solely G-protein-dependent pathways. Moreover, CXCR3-mediated changes in cellular impedance correlated with G-protein signaling, but not ß-arrestin2 recruitment.


Assuntos
Impedância Elétrica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Isoquinolinas/farmacologia , Receptores CXCR3/agonistas , Acetamidas/farmacologia , Quimiocina CXCL10/farmacologia , Quimiocina CXCL11/farmacologia , Quimiocina CXCL9/farmacologia , Células HEK293 , Humanos , Ligantes , Redes e Vias Metabólicas , Toxina Pertussis/farmacologia , Pirimidinas/farmacologia , Receptores CXCR3/antagonistas & inibidores
9.
J Pharmacol Exp Ther ; 325(2): 544-55, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18270317

RESUMO

The chemokine receptor CXCR3 is involved in various inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, and allograft rejection in transplantation patients. The CXCR3 ligands CXCL9, CXCL10, and CXCL11 are expressed at sites of inflammation, and they attract CXCR3-bearing lymphocytes, thus contributing to the inflammatory process. In this study, we characterize five nonpeptidergic compounds of different chemical classes that block the action of CXCL10 and CXCL11 at the human CXCR3, i.e., the 3H-pyrido[2,3-d]pyrimidin-4-one derivatives N-1R-[3-(4-ethoxy-phenyl)-4-oxo-3,4-dihydro-pyrido[2,3-d]pyrimidin-2-yl]-ethyl-N-pyridin-3-ylmethyl-2-(4-fluoro-3-trifluoromethyl-phenyl)-acetamide (VUF10472/NBI-74330) and N-1R-[3-(4-ethoxy-phenyl)-4-oxo-3,4-dihydro-pyrido[2,3-d]pyrimidin-2-yl]-ethyl-N-pyridin-3-ylmethyl-2-(4-trifluoromethoxy-phenyl)-acetamide (VUF10085/AMG-487), the 3H-quinazolin-4-one decanoic acid {1-[3-(4-cyano-phenyl)-4-oxo-3,4-dihydro-quinazolin-2-yl]-ethyl}-(2-dimethylamino-ethyl)-amide (VUF5834), the imidazolium compound 1,3-bis-[2-(3,4-dichloro-phenyl)-2-oxo-ethyl]-3H-imidazol-1-ium bromide (VUF10132), and the quaternary ammonium anilide N,N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzocyclohepten-8-yl]-carbonyl]amino]benzyl] tetrahydro-2H-pyran-4-aminium chloride (TAK-779). To understand the action of these CXCR3 antagonists in various animal models of disease, the compounds were also tested at rat and mouse CXCR3, as well as at CXCR3 from rhesus macaque, which was cloned and characterized for the first time in this study. Except for TAK-779, all compounds show slightly lower affinity for rodent CXCR3 than for primate CXCR3. In addition, we have characterized the molecular mechanism of action of the various antagonists at the human CXCR3 receptor. All tested compounds act as noncompetitive antagonists at CXCR3. Moreover, this noncompetitive behavior is accompanied by inverse agonistic properties of all five compounds as determined on an identified constitutively active mutant of CXCR3, CXCR3 N3.35A. It is interesting to note that all compounds except TAK-779 act as full inverse agonists at CXCR3 N3.35A. TAK-779 shows weak partial inverse agonism at CXCR3 N3.35A, and it probably has a different mode of interaction with CXCR3 than the other two classes of small-molecule inverse agonists.


Assuntos
Receptores CXCR3/antagonistas & inibidores , Animais , Células COS , Linhagem Celular , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Chlorocebus aethiops , Humanos , Ligantes , Macaca mulatta , Camundongos , Dados de Sequência Molecular , Ratos , Receptores CXCR3/agonistas , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores Histamínicos H1/metabolismo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...