Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13160, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915203

RESUMO

The cell cycle is tightly regulated by protein phosphorylation and ubiquitylation events. During mitosis, the multi-subunit cullin-RING E3 ubiquitin ligase APC/c functions as a molecular switch which signals for one cell to divide into two daughter cells, through the ubiquitylation and proteasomal degradation of mitotic cyclins. The contributions of other E3 ligase families during cell cycle progression remain less well understood. Similarly, the roles of ubiquitin chain types beyond homotypic K48 chains in S-phase or branched K11/K48 chains during mitosis, also remain to be fully determined. Our recent findings that HECTD1 ubiquitin ligase activity assembles branched K29/K48 ubiquitin linkages prompted us to evaluate HECTD1 function during the cell cycle. We used transient knockdown and genetic knockout to show that HECTD1 depletion in HEK293T and HeLa cells decreases cell number and we established that this is mediated through loss of ubiquitin ligase activity. Interestingly, we found that HECTD1 depletion increases the proportion of cells with aligned chromosomes (Prometa/Metaphase) and we confirmed this molecularly using phospho-Histone H3 (Ser28) as a marker of mitosis. Time-lapse microscopy of NEBD to anaphase onset established that HECTD1-depleted cells take on average longer to go through mitosis. In line with this data, HECTD1 depletion reduced the activity of the Spindle Assembly Checkpoint, and BUB3, a component of the Mitosis Checkpoint Complex, was identified as novel HECTD1 interactor. BUB3, BUBR1 or MAD2 protein levels remained unchanged in HECTD1-depleted cells. Overall, this study reveals a novel putative role for HECTD1 during mitosis and warrants further work to elucidate the mechanisms involved.


Assuntos
Proteínas de Ciclo Celular , Ubiquitina-Proteína Ligases , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células HEK293 , Células HeLa , Humanos , Mitose , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
J Biol Chem ; 296: 100246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33853758

RESUMO

Ubiquitin is a versatile posttranslational modification, which is covalently attached to protein targets either as a single moiety or as a ubiquitin chain. In contrast to K48 and K63-linked chains, which have been extensively studied, the regulation and function of most atypical ubiquitin chains are only starting to emerge. The deubiquitinase TRABID/ZRANB1 is tuned for the recognition and cleavage of K29 and K33-linked chains. Yet, substrates of TRABID and the cellular functions of these atypical ubiquitin signals remain unclear. We determined the interactome of two TRABID constructs rendered catalytic dead either through a point mutation in the catalytic cysteine residue or through removal of the OTU catalytic domain. We identified 50 proteins trapped by both constructs and which therefore represent candidate substrates of TRABID. The E3 ubiquitin ligase HECTD1 was then validated as a substrate of TRABID and used UbiCREST and Ub-AQUA proteomics to show that HECTD1 preferentially assembles K29- and K48-linked ubiquitin chains. Further in vitro autoubiquitination assays using ubiquitin mutants established that while HECTD1 can assemble short homotypic K29 and K48-linked chains, it requires branching at K29/K48 in order to achieve its full ubiquitin ligase activity. We next used transient knockdown and genetic knockout of TRABID in mammalian cells in order to determine the functional relationship between TRABID and HECTD1. This revealed that upon TRABID depletion, HECTD1 is readily degraded. Thus, this study identifies HECTD1 as a mammalian E3 ligase that assembles branched K29/K48 chains and also establishes TRABID-HECTD1 as a DUB/E3 pair regulating K29 linkages.


Assuntos
Endopeptidases/genética , Proteômica , Ubiquitina-Proteína Ligases/genética , Ubiquitina/genética , Ubiquitinação/genética , Sequência de Aminoácidos/genética , Animais , Células COS , Chlorocebus aethiops , Cães , Endopeptidases/química , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Mutação Puntual/genética , Proteólise , Transdução de Sinais/genética , Especificidade por Substrato/genética , Ubiquitina/química , Ubiquitina-Proteína Ligases/química
3.
Front Oncol ; 10: 574011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324551

RESUMO

Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-ß, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.

4.
Electrophoresis ; 40(7): 1061-1065, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30575976

RESUMO

Multidimensional separation techniques play an increasingly important role in separation science, especially for the analysis of complex samples such as proteins. The combination of reversed-phase liquid chromatography in the nanoscale and CZE is especially beneficial due to their nearly orthogonal separation mechanism and well-suited geometries/dimensions. Here, a heart-cut nano-LC-CZE-MS setup was developed utilizing for the first time a mechanical 4-port valve as LC-CE interface. A model protein mixture containing four different protein species was first separated by nano LC followed by a heart-cut transfer of individual LC peaks and subsequent CZE-MS analysis. In the CZE dimension, various glycoforms of one protein species were separated. Improved separation capabilities were achieved compared to the 1D methods, which was exemplarily shown for ribonuclease B and its different glycosylated forms. LODs in the lower µg/mL range were determined, which are considerably lower compared to traditional CZE-MS. In addition, this study represents the first application of an LC-CE-MS system for intact protein analysis. The nano-LC-CZE-MS system is expected to be applicable to various other analytical challenges.


Assuntos
Ribonucleases/análise , Cromatografia de Fase Reversa/instrumentação , Cromatografia de Fase Reversa/métodos , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Glicosilação , Concentração de Íons de Hidrogênio , Limite de Detecção , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA