Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38198271

RESUMO

This paper leverages the OpenSim physics-based simulation environment for the forward dynamic simulation of an osseointegrated transfemoral amputee musculoskeletal model, wearing a generic prosthesis. A deep reinforcement learning architecture, which combines the proximal policy optimization algorithm with imitation learning, is designed to enable the model to walk by using three different observation states. The first is a complete state that includes the agent's kinematics, ground reaction forces, and muscle data; the second is a reduced state that only includes the kinematics and ground reaction forces; the third is an augmented state that combines the kinematics and ground reaction forces with a prediction of the muscle data generated by a fully-connected feed-forward neural network. The empirical results demonstrate that the model trained with the augmented observation state can achieve walking patterns with rewards and gait symmetry ratings comparable to those of the model trained with the complete observation state, while there are no symmetric walking patterns when using the reduced observation state. This paper shows the importance of including muscle data in a deep reinforcement learning architecture for the forward dynamic simulation of musculoskeletal models of transfemoral amputees.


Assuntos
Amputados , Membros Artificiais , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Fenômenos Biomecânicos
2.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433469

RESUMO

This paper focuses on the classification of seven locomotion modes (sitting, standing, level ground walking, ramp ascent and descent, stair ascent and descent), the transitions among these modes, and the gait phases within each mode, by only using data in the frequency domain from one or two inertial measurement units. Different deep neural network configurations are investigated and compared by combining convolutional and recurrent layers. The results show that a system composed of a convolutional neural network followed by a long short-term memory network is able to classify with a mean F1-score of 0.89 and 0.91 for ten healthy subjects, and of 0.92 and 0.95 for one osseointegrated transfemoral amputee subject (excluding the gait phases because they are not labeled in the data-set), using one and two inertial measurement units, respectively, with a 5-fold cross-validation. The promising results obtained in this study pave the way for using deep learning for the control of transfemoral prostheses with a minimum number of inertial measurement units.


Assuntos
Amputados , Marcha , Humanos , Locomoção , Caminhada , Redes Neurais de Computação
3.
Cognit Comput ; 3(1): 223-240, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21475690

RESUMO

Most bottom-up models that predict human eye fixations are based on contrast features. The saliency model of Itti, Koch and Niebur is an example of such contrast-saliency models. Although the model has been successfully compared to human eye fixations, we show that it lacks preciseness in the prediction of fixations on mirror-symmetrical forms. The contrast model gives high response at the borders, whereas human observers consistently look at the symmetrical center of these forms. We propose a saliency model that predicts eye fixations using local mirror symmetry. To test the model, we performed an eye-tracking experiment with participants viewing complex photographic images and compared the data with our symmetry model and the contrast model. The results show that our symmetry model predicts human eye fixations significantly better on a wide variety of images including many that are not selected for their symmetrical content. Moreover, our results show that especially early fixations are on highly symmetrical areas of the images. We conclude that symmetry is a strong predictor of human eye fixations and that it can be used as a predictor of the order of fixation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...