Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 68(3): 846-856, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746054

RESUMO

Robot-assisted minimally invasive surgical (MIS) techniques offer improved instrument precision and dexterity, reduced patient trauma and risk, and promise to lessen the skill gap among surgeons. These approaches are common in general surgery, urology, and gynecology. However, MIS techniques remain largely absent for surgical applications within narrow, confined workspaces, such as neuroendoscopy. The limitation stems from a lack of small yet dexterous robotic tools. In this work, we present the first instance of a surgical robot with a direct magnetically-driven end effector capable of being deployed through a standard neuroendoscopic working channel (3.2 mm outer diameter) and operate at the neuroventricular scale. We propose a physical model for the gripping performance of three unique end-effector magnetization profiles and mechanical designs. Rates of blocking force per external magnetic flux density magnitude were 0.309 N/T, 0.880 N/T, and 0.351 N/T for the three designs which matched the physical model's prediction within 14.9% error. The rate of gripper closure per external magnetic flux density had a mean percent error of 11.2% compared to the model. The robot's performance was qualitatively evaluated during a pineal region tumor resection on a tumor analogue in a silicone brain phantom. These results suggest that wireless magnetic actuation may be feasible for dexterously manipulating tissue during minimally invasive neurosurgical procedures.


Assuntos
Neuroendoscopia , Robótica , Desenho de Equipamento , Força da Mão , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Instrumentos Cirúrgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...