Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(8): e1905719, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31851400

RESUMO

The extracellular matrix (ECM) has force-responsive (i.e., mechanochemical) properties that enable adaptation to mechanical loading through changes in fibrous network structure and interfiber bonding. Imparting such properties into synthetic fibrous materials will allow reinforcement under mechanical load, the potential for material self-adhesion, and the general mimicking of ECM. Multifiber hydrogel networks are developed through the electrospinning of multiple fibrous hydrogel populations, where fibers contain complementary chemical moieties (e.g., aldehyde and hydrazide groups) that form covalent bonds within minutes when brought into contact under mechanical load. These fiber interactions lead to microscale anisotropy, as well as increased material stiffness and plastic deformation. Macroscale structures (e.g., tubes and layered scaffolds) are fabricated from these materials through interfiber bonding and adhesion when placed into contact while maintaining a microscale fibrous architecture. The design principles for engineering plasticity described can be applied to numerous material systems to introduce unique properties, from textiles to biomedical applications.


Assuntos
Adesivos/química , Hidrogéis/química , Módulo de Elasticidade , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...