Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int ; 313: 110344, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32593110

RESUMO

In this follow-up study the collaboration between two research groups from the USA and the Netherlands was continued to expand the framework of chemical attribution for the homemade explosive erythritol tetranitrate (ETN). Isotope ratio mass spectrometry (IRMS) analysis was performed to predict possible links between ETN samples and its precursors. Carbon, nitrogen, hydrogen and oxygen isotope ratios were determined for a wide variety of precursor sources and for ETN samples that were prepared with selected precursors. The stability of isotope ratios of ETN has been demonstrated for melt-cast samples and two-year old samples, which enables sample comparison of ETN in forensic casework independent of age and appearance. Erythritol and nitric acid (or nitrate salt) are the exclusive donor of carbon and nitrogen atoms in ETN, respectively, and robust linear relationships between precursor and the end-product were observed for these isotopes. This allowed for defining isotopic enrichment ranges for carbon and nitrogen that support the hypothesis that a given erythritol or nitrate precursor was used to synthesize a specific ETN batch. The hydrogen and oxygen atoms in ETN do not originate from one exclusive donor material, making linkage prediction more difficult. However, the large negative enrichments observed for both isotopes do provide powerful information to exclude suspected precursor materials as donor of ETN. Additionally, combing the isotopic data of all elements results in a higher discrimination power for ETN samples and its precursor materials. Combining the findings of our previously reported LC-MS analysis of ETN with this IRMS study is expected to increase the robustness of the forensic comparison even further. The partially nitrated impurities can provide insight on the synthesis conditions while the isotope data contain information on the raw materials used for the production of ETN.

2.
Isotopes Environ Health Stud ; 54(1): 16-27, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28748732

RESUMO

We investigated the transfer of 15N into the soil via 15N uptake and release by tree roots, which involves the principles of the split-root technique. One half of the root system received an injection of (15NH4)2SO4 and the other half equivalent amounts of (NH4)2SO4 at 15N natural abundance level. 15N was transferred from one side of the root system (15N side) to the other side (14N side) and released into the soil. The method was conducted with Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst). Two concentration levels of (NH4)2SO4 were used, corresponding with annual N deposition in the Netherlands (30 kg N ha-1) and a twelfth of that (2.5 kg N ha-1). Samples were taken 3 and 6 weeks after labelling and divided into needles + stem, roots, rhizosphere and bulk soil. Already 3 weeks after labelling, Scots pine took up 23.7 % of the low and 9.1 % of the high amounts of 15N, while Norway spruce took up 21.5 and 32.1 %, respectively. Both species transported proportions of 15N to the rhizosphere (0.1-0.2 %) and bulk soil (0.3-0.9 %). The method is a useful tool to investigate the fate of root-derived N in soils, for example, for the formation of stable forms of soil organic matter.


Assuntos
Monitoramento Ambiental/métodos , Isótopos de Nitrogênio/metabolismo , Picea/metabolismo , Pinus sylvestris/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...