Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(3): 1822-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25652433

RESUMO

For the application of colloidal semiconductor quantum dots in optoelectronic devices, for example, solar cells and light-emitting diodes, it is crucial to understand and control their charge transport and recombination dynamics at high carrier densities. Both can be studied in ambipolar, light-emitting field-effect transistors (LEFETs). Here, we report the first quantum dot light-emitting transistor. Electrolyte-gated PbS quantum dot LEFETs exhibit near-infrared electroluminescence from a confined region within the channel, which proves true ambipolar transport in ligand-exchanged quantum dot solids. Unexpectedly, the external quantum efficiencies improve significantly with current density. This effect correlates with the unusual increase of photoluminescence quantum yield and longer average lifetimes at higher electron and hole concentrations in PbS quantum dot thin films. We attribute the initially low emission efficiencies to nonradiative losses through trap states. At higher carrier densities, these trap states are deactivated and emission is dominated by trions.

2.
Proc Natl Acad Sci U S A ; 109(39): 15565-71, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22474338

RESUMO

In the current work, we have documented the use of two complementary supramolecular motifs, namely multipoint hydrogen bonding and metal complexation, as a means to control the step-by-step assembly of a panchromatically absorbing and highly versatile solar energy conversion system. On one hand, two different perylenediimides (1a/1b) have been integrated together with a metalloporphyrin (2) by means of the Hamilton receptor/cyanuric acid hydrogen bonding motif into energy transduction systems 1a•2 or 1b•2. Steady-state and time-resolved measurements corroborated that upon selective photoexcitation of the perylenediimides (1a/1b), an energy transfer evolved from the singlet excited state of the perylenediimides (1a/1b) to that of the metalloporphyrin (2). On the other hand, fullerene (3) and metalloporphyrin (2) form the electron donor-acceptor system 2•3 via axial complexation. Photophysical measurements confirm that an electron transfer prevails from the singlet excited state of 2 to the electron-accepting 3. The correspondingly formed radical ion pair state decays with a lifetime of 1.0 ± 0.1 ns. As a complement to the aforementioned, the energy transduction features of 1a•2 were combined with the electron donor-acceptor characteristics of 2•3 to afford 1a•2•3. To this end, time-resolved measurements reveal that the initially occurring energy-transfer interaction (53 ± 3 ps) between 1a/1b and 2 is followed by an electron transfer (12 ± 1 ps) from 2 to 3. From multiwavelength analyses, the lifetime of the radical ion pair state in 1a•2•3-as a product of a cascade of light-induced energy and electron transfer-was derived as 3.8 ± 0.2 ns.


Assuntos
Metaloporfirinas/química , Processos Fotoquímicos , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...