Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 13(1): 4, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859305

RESUMO

The body muscle is an important tissue used in organisms for proper viability and locomotion. Although this tissue is generally well studied and characterized, and many pathways have been elucidated throughout the years, we still lack a comprehensive understanding of its transcriptome and how it controls muscle development and function. Here, we have updated a nuclear FACS sorting-based methodology to isolate and sequence a high-quality muscle transcriptome from Caenorhabditis elegans mixed-stage animals. We have identified 2848 muscle-specific protein-coding genes, including 78 transcription factors and 206 protein-coding genes containing an RNA binding domain. We studied their interaction network, performed a detailed promoter analysis, and identified novel muscle-specific cis-acting elements. We have also identified 16 high-quality muscle-specific miRNAs, studied their function in vivo using fluorochrome-based analyses, and developed a high-quality C. elegans miRNA interactome incorporating other muscle-specific datasets produced by our lab and others.Our study expands our understanding of how muscle tissue functions in C. elegans andin turn provides results that can in the future be applied to humans to study muscular-related diseases.


Assuntos
Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Transcriptoma , Músculos , Corpos Nucleares , Movimento Celular
2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769047

RESUMO

Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.


Assuntos
Processamento Alternativo/genética , MicroRNAs/genética , Animais , Expressão Gênica/genética , Humanos , Interferência de RNA/fisiologia , Transcrição Gênica/genética
3.
Genetics ; 212(3): 931-951, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31073019

RESUMO

MicroRNAs (miRNAs) are known to modulate gene expression, but their activity at the tissue-specific level remains largely uncharacterized. To study their contribution to tissue-specific gene expression, we developed novel tools to profile putative miRNA targets in the Caenorhabditis elegans intestine and body muscle. We validated many previously described interactions and identified ∼3500 novel targets. Many of the candidate miRNA targets curated are known to modulate the functions of their respective tissues. Within our data sets we observed a disparity in the use of miRNA-based gene regulation between the intestine and body muscle. The intestine contained significantly more putative miRNA targets than the body muscle highlighting its transcriptional complexity. We detected an unexpected enrichment of RNA-binding proteins targeted by miRNA in both tissues, with a notable abundance of RNA splicing factors. We developed in vivo genetic tools to validate and further study three RNA splicing factors identified as putative miRNA targets in our study (asd-2, hrp-2, and smu-2), and show that these factors indeed contain functional miRNA regulatory elements in their 3'UTRs that are able to repress their expression in the intestine. In addition, the alternative splicing pattern of their respective downstream targets (unc-60, unc-52, lin-10, and ret-1) is dysregulated when the miRNA pathway is disrupted. A reannotation of the transcriptome data in C. elegans strains that are deficient in the miRNA pathway from past studies supports and expands on our results. This study highlights an unexpected role for miRNAs in modulating tissue-specific gene isoforms, where post-transcriptional regulation of RNA splicing factors associates with tissue-specific alternative splicing.


Assuntos
Processamento Alternativo , Proteínas de Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Músculo Esquelético/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade de Órgãos , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...