Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 162(3): 844-858, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822802

RESUMO

BACKGROUND & AIMS: The protozoa Giardia duodenalis is a major cause of gastrointestinal illness worldwide, but underlying pathophysiological mechanisms remain obscure, partly due to the absence of adequate cellular models. We aimed at overcoming these limitations and recapitulating the authentic series of pathogenic events in the primary human duodenal tissue by using the human organoid system. METHODS: We established a compartmentalized cellular transwell system with electrophysiological and barrier properties akin to duodenal mucosa and dissected the events leading to G. duodenalis-induced barrier breakdown by functional analysis of transcriptional, electrophysiological, and tight junction components. RESULTS: Organoid-derived cell layers of different donors showed a time- and parasite load-dependent leak flux indicated by collapse of the epithelial barrier upon G. duodenalis infection. Gene set enrichment analysis suggested major expression changes, including gene sets contributing to ion transport and tight junction structure. Solute carrier family 12 member 2 and cystic fibrosis transmembrane conductance regulator-dependent chloride secretion was reduced early after infection, while changes in the tight junction composition, localization, and structural organization occurred later as revealed by immunofluorescence analysis and freeze fracture electron microscopy. Functionally, barrier loss was linked to the adenosine 3',5'-cyclic monophosphate (cAMP)/protein kinase A-cAMP response element-binding protein signaling pathway. CONCLUSIONS: Data suggest a previously unknown sequence of events culminating in intestinal barrier dysfunction upon G. duodenalis infection during which alterations of cellular ion transport were followed by breakdown of the tight junctional complex and loss of epithelial integrity, events involving a cAMP/protein kinase A-cAMP response element-binding protein mechanism. These findings and the newly established organoid-derived model to study G. duodenalis infection may help to explore new options for intervening with disease and infection, in particular relevant for chronic cases of giardiasis.


Assuntos
Giardíase/fisiopatologia , Mucosa Intestinal/fisiopatologia , Transporte de Íons , Transdução de Sinais , Junções Íntimas/fisiologia , Apoptose , Células CACO-2 , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Duodeno , Impedância Elétrica , Giardia lamblia , Giardíase/genética , Giardíase/imunologia , Humanos , Interleucina-1/genética , Transporte de Íons/genética , NF-kappa B/genética , Organoides , Carga Parasitária , Membro 2 da Família 12 de Carreador de Soluto/genética , Junções Íntimas/genética , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura , Transcriptoma , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...