Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208277

RESUMO

In human cells, one-third of all polypeptides enter the secretory pathway at the endoplasmic reticulum (ER). The specificity and efficiency of this process are guaranteed by targeting of mRNAs and/or polypeptides to the ER membrane. Cytosolic SRP and its receptor in the ER membrane facilitate the cotranslational targeting of most ribosome-nascent precursor polypeptide chain (RNC) complexes together with the respective mRNAs to the Sec61 complex in the ER membrane. Alternatively, fully synthesized precursor polypeptides are targeted to the ER membrane post-translationally by either the TRC, SND, or PEX19/3 pathway. Furthermore, there is targeting of mRNAs to the ER membrane, which does not involve SRP but involves mRNA- or RNC-binding proteins on the ER surface, such as RRBP1 or KTN1. Traditionally, the targeting reactions were studied in cell-free or cellular assays, which focus on a single precursor polypeptide and allow the conclusion of whether a certain precursor can use a certain pathway. Recently, cellular approaches such as proximity-based ribosome profiling or quantitative proteomics were employed to address the question of which precursors use certain pathways under physiological conditions. Here, we combined siRNA-mediated depletion of putative mRNA receptors in HeLa cells with label-free quantitative proteomics and differential protein abundance analysis to characterize RRBP1- or KTN1-involving precursors and to identify possible genetic interactions between the various targeting pathways. Furthermore, we discuss the possible implications on the so-called TIGER domains and critically discuss the pros and cons of this experimental approach.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Transporte/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteoma/análise , Proteoma/metabolismo , RNA Mensageiro/genética
2.
FEBS J ; 287(21): 4612-4640, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32133789

RESUMO

In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Transporte Proteico , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/genética , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Especificidade por Substrato
3.
Nat Commun ; 9(1): 3765, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217974

RESUMO

In mammalian cells, one-third of all polypeptides are transported into or across the ER membrane via the Sec61 channel. While the Sec61 complex facilitates translocation of all polypeptides with amino-terminal signal peptides (SP) or transmembrane helices, the Sec61-auxiliary translocon-associated protein (TRAP) complex supports translocation of only a subset of precursors. To characterize determinants of TRAP substrate specificity, we here systematically identify TRAP-dependent precursors by analyzing cellular protein abundance changes upon TRAP depletion using quantitative label-free proteomics. The results are validated in independent experiments by western blotting, quantitative RT-PCR, and complementation analysis. The SPs of TRAP clients exhibit above-average glycine-plus-proline content and below-average hydrophobicity as distinguishing features. Thus, TRAP may act as SP receptor on the ER membrane's cytosolic face, recognizing precursor polypeptides with SPs of high glycine-plus-proline content and/or low hydrophobicity, and triggering substrate-specific opening of the Sec61 channel through interactions with the ER-lumenal hinge of Sec61α.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Canais de Translocação SEC/metabolismo , Western Blotting , Glicina , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Prolina , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Especificidade por Substrato
4.
Nat Commun ; 9(1): 3489, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154480

RESUMO

To fulfill its role in protein biogenesis, the endoplasmic reticulum (ER) depends on the Hsp70-type molecular chaperone BiP, which requires a constant ATP supply. However, the carrier that catalyzes ATP uptake into the ER was unknown. Here, we report that our screen of gene expression datasets for member(s) of the family of solute carriers that are co-expressed with BiP and are ER membrane proteins identifies SLC35B1 as a potential candidate. Heterologous expression of SLC35B1 in E. coli reveals that SLC35B1 is highly specific for ATP and ADP and acts in antiport mode. Moreover, depletion of SLC35B1 from HeLa cells reduces ER ATP levels and, as a consequence, BiP activity. Thus, human SLC35B1 may provide ATP to the ER and was named AXER (ATP/ADP exchanger in the ER membrane). Furthermore, we propose an ER to cytosol low energy response regulatory axis (termed lowER) that appears as central for maintaining ER ATP supply.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
5.
Semin Cell Dev Biol ; 76: 191-200, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28923515

RESUMO

Mitochondria are complex double-membrane-bound organelles of eukaryotic cells that function as energy-converting powerhouses, metabolic factories and signaling centers. The outer membrane controls the exchange of material and information with other cellular compartments. The inner membrane provides an extended, highly folded surface for selective transport and energy-coupling reactions. It can be divided into an inner boundary membrane and tubular or lamellar cristae membranes that accommodate the oxidative phosphorylation units. Outer membrane, inner boundary membrane and cristae come together at crista junctions, where the mitochondrial contact site and cristae organizing system (MICOS) acts as a membrane-shaping and -connecting scaffold. This peculiar architecture is of pivotal importance for multiple mitochondrial functions. Many elaborate studies in the past years have shed light on the subunit composition and organization of MICOS. In this review article, we summarize these insights and then move on to discuss exciting recent discoveries on the integrative functions of MICOS. Multi-faceted connections to other major players of mitochondrial biogenesis and physiology, like the protein import machineries, the oxidative phosphorylation system, carrier proteins and phospholipid biosynthesis enzymes, are currently emerging. Therefore, we propose that MICOS acts as a central hub in mitochondrial membrane architecture and functionality.


Assuntos
Mitocôndrias/genética , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais
6.
FEBS Lett ; 591(20): 3211-3224, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28862756

RESUMO

Recently, understanding of protein targeting to the endoplasmic reticulum (ER) was expanded by the discovery of multiple pathways that function in parallel to the signal recognition particle (SRP). Guided entry of tail-anchored proteins and SRP independent (SND) are two such targeting pathways described in yeast. So far, no human SND component is functionally characterized. Here, we report hSnd2 as the first constituent of the human SND pathway able to support substrate-specific protein targeting to the ER. Similar to its yeast counterpart, hSnd2 is assumed to function as a membrane-bound receptor preferentially targeting precursors carrying C-terminal transmembrane domains. Our genetic and physical interaction studies show that hSnd2 is part of a complex network of targeting and translocation that is dynamically regulated.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Subunidades Proteicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Canais de Translocação SEC/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Coelhos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Canais de Translocação SEC/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal , Transdução de Sinais , Especificidade por Substrato
8.
Nature ; 540(7631): 134-138, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905431

RESUMO

In eukaryotes, up to one-third of cellular proteins are targeted to the endoplasmic reticulum, where they undergo folding, processing, sorting and trafficking to subsequent endomembrane compartments. Targeting to the endoplasmic reticulum has been shown to occur co-translationally by the signal recognition particle (SRP) pathway or post-translationally by the mammalian transmembrane recognition complex of 40 kDa (TRC40) and homologous yeast guided entry of tail-anchored proteins (GET) pathways. Despite the range of proteins that can be catered for by these two pathways, many proteins are still known to be independent of both SRP and GET, so there seems to be a critical need for an additional dedicated pathway for endoplasmic reticulum relay. We set out to uncover additional targeting proteins using unbiased high-content screening approaches. To this end, we performed a systematic visual screen using the yeast Saccharomyces cerevisiae, and uncovered three uncharacterized proteins whose loss affected targeting. We suggest that these proteins work together and demonstrate that they function in parallel with SRP and GET to target a broad range of substrates to the endoplasmic reticulum. The three proteins, which we name Snd1, Snd2 and Snd3 (for SRP-independent targeting), can synthetically compensate for the loss of both the SRP and GET pathways, and act as a backup targeting system. This explains why it has previously been difficult to demonstrate complete loss of targeting for some substrates. Our discovery thus puts in place an essential piece of the endoplasmic reticulum targeting puzzle, highlighting how the targeting apparatus of the eukaryotic cell is robust, interlinked and flexible.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Domínios Proteicos , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Ribossômicas/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
9.
Nat Cell Biol ; 18(11): 1173-1184, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27749824

RESUMO

The endoplasmic reticulum (ER) is a site of protein biogenesis in eukaryotic cells. Perturbing ER homeostasis activates stress programs collectively called the unfolded protein response (UPR). The UPR enhances production of ER-resident chaperones and enzymes to reduce the burden of misfolded proteins. On resolution of ER stress, ill-defined, selective autophagic programs remove excess ER components. Here we identify Sec62, a constituent of the translocon complex regulating protein import in the mammalian ER, as an ER-resident autophagy receptor. Sec62 intervenes during recovery from ER stress to selectively deliver ER components to the autolysosomal system for clearance in a series of events that we name recovER-phagy. Sec62 contains a conserved LC3-interacting region in the C-terminal cytosolic domain that is required for its function in recovER-phagy, but is dispensable for its function in the protein translocation machinery. Our results identify Sec62 as a critical molecular component in maintenance and recovery of ER homeostasis.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Autofagia , Homeostase , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Transporte Proteico/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
10.
J Biol Chem ; 290(30): 18621-35, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26085089

RESUMO

In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic polypeptide-conducting channel, the heterotrimeric Sec61 complex. Previous work has characterized the Sec61 complex as a potential ER Ca(2+) leak channel in HeLa cells and identified ER lumenal molecular chaperone immunoglobulin heavy-chain-binding protein (BiP) as limiting Ca(2+) leakage via the open Sec61 channel by facilitating channel closing. This BiP activity involves binding of BiP to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. Of note, the Y344H mutation destroys the BiP binding site and causes pancreatic ß-cell apoptosis and diabetes in mice. Here, we systematically depleted HeLa cells of the BiP co-chaperones by siRNA-mediated gene silencing and used live cell Ca(2+) imaging to monitor the effects on ER Ca(2+) leakage. Depletion of either one of the ER lumenal BiP co-chaperones, ERj3 and ERj6, but not the ER membrane-resident co-chaperones (such as Sec63 protein, which assists BiP in Sec61 channel opening) led to increased Ca(2+) leakage via Sec6 complex, thereby phenocopying the effect of BiP depletion. Thus, BiP facilitates Sec61 channel closure (i.e. limits ER Ca(2+) leakage) via the Sec61 channel with the help of ERj3 and ERj6. Interestingly, deletion of ERj6 causes pancreatic ß-cell failure and diabetes in mice and humans. We suggest that co-chaperone-controlled gating of the Sec61 channel by BiP is particularly important for cells, which are highly active in protein secretion, and that breakdown of this regulatory mechanism can cause apoptosis and disease.


Assuntos
Diabetes Mellitus/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Chaperona BiP do Retículo Endoplasmático , Inativação Gênica , Proteínas de Choque Térmico HSP40/genética , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC
11.
Am J Hum Genet ; 95(6): 689-97, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25466870

RESUMO

Diabetes mellitus and neurodegeneration are common diseases for which shared genetic factors are still only partly known. Here, we show that loss of the BiP (immunoglobulin heavy-chain binding protein) co-chaperone DNAJC3 leads to diabetes mellitus and widespread neurodegeneration. We investigated three siblings with juvenile-onset diabetes and central and peripheral neurodegeneration, including ataxia, upper-motor-neuron damage, peripheral neuropathy, hearing loss, and cerebral atrophy. Exome sequencing identified a homozygous stop mutation in DNAJC3. Screening of a diabetes database with 226,194 individuals yielded eight phenotypically similar individuals and one family carrying a homozygous DNAJC3 deletion. DNAJC3 was absent in fibroblasts from all affected subjects in both families. To delineate the phenotypic and mutational spectrum and the genetic variability of DNAJC3, we analyzed 8,603 exomes, including 506 from families affected by diabetes, ataxia, upper-motor-neuron damage, peripheral neuropathy, or hearing loss. This analysis revealed only one further loss-of-function allele in DNAJC3 and no further associations in subjects with only a subset of the features of the main phenotype. Our findings demonstrate that loss-of-function DNAJC3 mutations lead to a monogenic, recessive form of diabetes mellitus in humans. Moreover, they present a common denominator for diabetes and widespread neurodegeneration. This complements findings from mice in which knockout of Dnajc3 leads to diabetes and modifies disease in a neurodegenerative model of Marinesco-Sjögren syndrome.


Assuntos
Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico/genética , Atrofia de Múltiplos Sistemas/genética , Adolescente , Adulto , Ataxia/genética , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Chaperona BiP do Retículo Endoplasmático , Exoma/genética , Feminino , Fibroblastos , Proteínas de Choque Térmico HSP40/metabolismo , Homozigoto , Humanos , Masculino , Modelos Moleculares , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Mutação , Linhagem , Fenótipo , Radiografia , Análise de Sequência de DNA , Adulto Jovem
12.
Nat Commun ; 5: 3072, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24407213

RESUMO

In mammalian cells, proteins are typically translocated across the endoplasmic reticulum (ER) membrane in a co-translational mode by the ER protein translocon, comprising the protein-conducting channel Sec61 and additional complexes involved in nascent chain processing and translocation. As an integral component of the translocon, the oligosaccharyl-transferase complex (OST) catalyses co-translational N-glycosylation, one of the most common protein modifications in eukaryotic cells. Here we use cryoelectron tomography, cryoelectron microscopy single-particle analysis and small interfering RNA-mediated gene silencing to determine the overall structure, oligomeric state and position of OST in the native ER protein translocon of mammalian cells in unprecedented detail. The observed positioning of OST in close proximity to Sec61 provides a basis for understanding how protein translocation into the ER and glycosylation of nascent proteins are structurally coupled. The overall spatial organization of the native translocon, as determined here, serves as a reliable framework for further hypothesis-driven studies.


Assuntos
Retículo Endoplasmático/química , Hexosiltransferases/química , Proteínas de Membrana/química , Fatores de Transcrição/química , Células Cultivadas , Microscopia Crioeletrônica , Retículo Endoplasmático/fisiologia , Inativação Gênica/fisiologia , Glicosilação , Células HeLa , Hexosiltransferases/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Transporte Proteico/fisiologia , RNA Interferente Pequeno/fisiologia , Canais de Translocação SEC , Fatores de Transcrição/fisiologia
13.
BMC Cancer ; 13: 574, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304694

RESUMO

BACKGROUND: Tumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca²âº. SEC62 silencing leads to elevated cytosolic Ca²âº and increased ER Ca²âº leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer. METHODS: In lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca²âº imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca²âº homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca²âº-sensitive interaction of Sec62 with the Sec61 complex. RESULTS: Sec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca²âº leakage channel in the ER, Sec61, by a direct and Ca²âº-sensitive interaction. A Ca²âº-binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment. CONCLUSIONS: Targeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options.


Assuntos
Calmodulina/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Sesterterpenos/farmacologia , Trifluoperazina/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Proliferação de Células , Expressão Gênica , Células HEK293 , Células HeLa , Homeostase , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fenótipo , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética
14.
Methods Mol Biol ; 1033: 285-99, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23996184

RESUMO

The development of small-interfering RNA (siRNA)-mediated gene-silencing strategies has made it possible to study the transport of precursors of soluble and membrane proteins into the endoplasmic reticulum (ER) of human cells. In these approaches, a certain target gene is silenced in the cell type of choice, followed by analysis of the effect of this silencing on the biogenesis of a single or set of precursor polypeptide(s) in cell culture or in cell-free assays involving semi-permeabilized cells and in vitro translations systems. These approaches allow for functional analysis of components of the ER-resident protein transport machinery as well as the elucidation of their potential cell-type variations and regulatory mechanisms. The gene-silencing and subsequent plasmid-based complementation carries the additional benefit of facilitating analysis of the consequences of disease-linked mutations in ER transport components.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Animais , Transporte Biológico , Técnicas de Cultura de Células , Linhagem Celular , Inativação Gênica , Humanos , Camundongos , Permeabilidade , Transporte Proteico , Proteínas/genética , Interferência de RNA
15.
EMBO J ; 31(15): 3282-96, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22796945

RESUMO

In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic protein-conducting channel, the Sec61 complex. Previous work has characterized the Sec61 channel as a potential ER Ca(2+) leak channel and identified calmodulin as limiting Ca(2+) leakage in a Ca(2+)-dependent manner by binding to an IQ motif in the cytosolic aminoterminus of Sec61α. Here, we manipulated the concentration of the ER lumenal chaperone BiP in cells in different ways and used live cell Ca(2+) imaging to monitor the effects of reduced levels of BiP on ER Ca(2+) leakage. Regardless of how the BiP concentration was lowered, the absence of available BiP led to increased Ca(2+) leakage via the Sec61 complex. When we replaced wild-type Sec61α with mutant Sec61αY344H in the same model cell, however, Ca(2+) leakage from the ER increased and was no longer affected by manipulation of the BiP concentration. Thus, BiP limits ER Ca(2+) leakage through the Sec61 complex by binding to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/fisiologia , Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Chaperona BiP do Retículo Endoplasmático , Inativação Gênica/fisiologia , Células HeLa , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Dobramento de Proteína/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Canais de Translocação SEC
16.
J Cell Sci ; 125(Pt 8): 1958-69, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22375059

RESUMO

Co-translational transport of polypeptides into the endoplasmic reticulum (ER) involves the Sec61 channel and additional components such as the ER lumenal Hsp70 BiP and its membrane-resident co-chaperone Sec63p in yeast. We investigated whether silencing the SEC61A1 gene in human cells affects co- and post-translational transport of presecretory proteins into the ER and post-translational membrane integration of tail-anchored proteins. Although silencing the SEC61A1 gene in HeLa cells inhibited co- and post-translational transport of signal-peptide-containing precursor proteins into the ER of semi-permeabilized cells, silencing the SEC61A1 gene did not affect transport of various types of tail-anchored protein. Furthermore, we demonstrated, with a similar knockdown approach, a precursor-specific involvement of mammalian Sec63 in the initial phase of co-translational protein transport into the ER. By contrast, silencing the SEC62 gene inhibited only post-translational transport of a signal-peptide-containing precursor protein.


Assuntos
DNA Helicases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Animais , DNA Helicases/genética , Retículo Endoplasmático/genética , Inativação Gênica , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Chaperonas Moleculares , Células NIH 3T3 , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas de Ligação a RNA , Canais de Translocação SEC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...