Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(64): 9194-9197, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32661546

RESUMO

Microwave assisted polycondensation for the synthesis of (partially) biobased polyazomethines in water (hydrothermal polymerization) was investigated for the first time in this study. The polyazomethines prepared via this environmentally friendly and simple method show comparable characteristics as the polymers prepared via traditional methods in organic solvents.

2.
Anal Chem ; 89(7): 4031-4037, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28252942

RESUMO

Direct analysis of synthetic fibers under ambient conditions is highly desired to identify the polymer, the finishes applied and irregularities that may compromise its performance and value. In this paper, laser ablation electrospray ionization ion mobility time-of-flight mass spectrometry (LAESI-IMS-TOF-MS) was used for the analysis of synthetic polymers and fibers. The key to this analysis was the absorption of laser light by aliphatic and aromatic nitrogen functionalities in the polymers. Analysis of polyamide (PA) 6, 46, 66, and 12 pellets and PA 6, 66, polyaramid and M5 fibers yielded characteristic fragment ions without any sample pretreatment, enabling their unambiguous identification. Synthetic fibers are, in addition, commonly covered with a surface layer for improved adhesion and processing. The same setup, but operated in a transient infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mode, allowed the detailed characterization of the fiber finish layer and the underlying polymer. Differences in finish layer distribution may cause variations in local properties of synthetic fibers. Here we also show the feasibility of mass spectrometry imaging (MSI) of the distribution of a finish layer on the synthetic fiber and the successful detection of local surface defects.

3.
Anal Bioanal Chem ; 396(4): 1481-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20043221

RESUMO

In the present study, we address the possibility of matrix-assisted laser desorption/ionization (MALDI)-time-of-flight MS analysis-induced chain fragmentation in poly(p-phenylene terephthalamide) (PPD-T) by considering two possible sources: (1) grinding-induced fragmentation resulting from the evaporation-grinding MALDI sample preparation method (E-G method) and (2) in-source/metastable fragmentation induced by the MALDI laser. An analysis of variance (ANOVA) statistical study found, with a high probability, that obtaining MALDI spectra with the effective laser area as large as possible (the "fanned-out" setting) did not cause any chain fragmentation due to the E-G MALDI sample preparation method, even when three additional grinding steps were used. However, the effect of laser fluence was less clear. A significant effect of laser fluence was observed for lower mass oligomers (<1,400 Da), but there was essentially no effect for higher mass species up to our limit of ANOVA measurement (approximately 2,300 Da). Plausible explanations are presented to explain these observations. The most likely scenario is that "unexpected" end-group modifications occur during PPD-T synthesis, producing small quantities of low mass species, which are amplified by the MALDI-EG extraction procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...