Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557840

RESUMO

Alkali trimers, Ak3, located on the surface of He nanodroplets are triply ionized following multiphoton absorption from an intense femtosecond laser pulse, leading to fragmentation into three correlated Ak+ ions. Combining the information from threefold covariance analysis of the emission direction of the fragment ions and their kinetic energy distributions P(Ekin), we find that Na3, K3, and Rb3 have an equilateral triangular structure, corresponding to that of the lowest lying quartet state A2'4, and determine the equilibrium bond distance Req(Na3) = 4.65 ± 0.15 Å, Req(K3) = 5.03 ± 0.18 Å, and Req(Rb3) = 5.45 ± 0.22 Å. For K3 and Rb3, these values agree well with existing theoretical calculations, while for Na3, the value is 0.2-0.3 Å larger than the existing theoretical results. The discrepancy is ascribed to a minor internuclear motion of Na3 during the ionization process. In addition, we determine the distribution of internuclear distances P(R) under the assumption of fixed bond angles. The results are compared to the square of the internuclear wave function |Ψ(R)|2.

2.
Phys Chem Chem Phys ; 26(17): 13118-13130, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629233

RESUMO

Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.

3.
Nature ; 623(7986): 319-323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938709

RESUMO

Solvation is a ubiquitous phenomenon in the natural sciences. At the macroscopic level, it is well understood through thermodynamics and chemical reaction kinetics1,2. At the atomic level, the primary steps of solvation are the attraction and binding of individual molecules or atoms of a solvent to molecules or ions of a solute1. These steps have, however, never been observed in real time. Here we instantly create a single sodium ion at the surface of a liquid helium nanodroplet3,4, and measure the number of solvent atoms that successively attach to the ion as a function of time. We found that the binding dynamics of the first five helium atoms is well described by a Poissonian process with a binding rate of 2.0 atoms per picosecond. This rate is consistent with time-dependent density-functional-theory simulations of the solvation process. Furthermore, our measurements enable an estimate of the energy removed from the region around the sodium ion as a function of time, revealing that half of the total solvation energy is dissipated after four picoseconds. Our experimental method opens possibilities for benchmarking theoretical models of ion solvation and for time-resolved measurements of cation-molecule complex formation.

4.
Phys Rev Lett ; 131(5): 053201, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595218

RESUMO

We demonstrate that a sodium dimer, Na_{2}(1^{3}Σ_{u}^{+}), residing on the surface of a helium nanodroplet, can be set into rotation by a nonresonant 1.0 ps infrared laser pulse. The time-dependent degree of alignment measured, exhibits a periodic, gradually decreasing structure that deviates qualitatively from that expected for gas-phase dimers. Comparison to alignment dynamics calculated from the time-dependent rotational Schrödinger equation shows that the deviation is due to the alignment dependent interaction between the dimer and the droplet surface. This interaction confines the dimer to the tangential plane of the droplet surface at the point where it resides and is the reason that the observed alignment dynamics is also well described by a 2D quantum rotor model.

5.
Phys Rev Lett ; 128(24): 243201, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776471

RESUMO

Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.

6.
Phys Rev Lett ; 128(9): 093201, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302820

RESUMO

Rubidium dimers residing on the surface of He nanodroplets are doubly ionized by an intense femtosecond laser pulse leading to fragmentation into a pair of Rb^{+} ions. We show that the kinetic energy of the Rb^{+} fragment ions can be used to identify dimers formed in either the X ^{1}Σ_{g}^{+} ground state or in the lowest-lying triplet state, a ^{3}Σ_{u}^{+}. From the experiment, we estimate the abundance ratio of dimers in the a and X states as a function of the mean droplet size and find values between 4∶1 and 5∶1. Our technique applies generally to dimers and trimers of alkali atoms, here also demonstrated for Li_{2}, Na_{2}, and K_{2}, and will enable femtosecond time-resolved measurements of their rotational and vibrational dynamics, possibly with atomic structural resolution.

7.
Annu Rev Phys Chem ; 73: 323-347, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35081323

RESUMO

We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nano-droplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions.

8.
Phys Rev Lett ; 125(1): 013001, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678640

RESUMO

Alignment of OCS, CS_{2}, and I_{2} molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS_{2} and I_{2}, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.

9.
Phys Chem Chem Phys ; 22(6): 3245-3253, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31995073

RESUMO

Rotational dynamics of gas phase carbon disulfide (CS2) dimers were induced by a moderately intense, circularly polarized alignment laser pulse and measured as a function of time by Coulomb explosion imaging with an intense fs probe pulse. For the alignment pulse, two different temporal intensity profiles were used: a truncated pulse with a 150 ps turn-on and a 8 ps turn-off, or a 'kick' pulse with a duration of 1.3 ps. For both types of pulse, rich rotational dynamics with characteristic full and fractional revivals were recorded, showing that the intermolecular carbon-carbon axis periodically aligns along the propagation direction of the laser pulses. The truncated pulse gave the strongest alignment, which we rationalize as being due to a flat relative phase between the components in the rotational wave packet generated. Fourier analysis of the alignment dynamics gave well-spaced peaks which were fit to determine the rotational constant, B, and the centrifugal constant, DJ, for the ground state of the dimer. Our results agree with values from high-resolution IR spectroscopy. Numerical simulations of the alignment accurately reproduced the experimental dynamics when the truncated pulse or a low intensity kick pulse was used, but failed to reproduce the dynamics induced by a high intensity kick pulse. We posit that the discrepancy is due to excitation of the intermolecular torsional motion by the kick pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...