Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
IEEE Trans Biomed Eng ; 71(3): 987-997, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831575

RESUMO

OBJECTIVE: Accurate estimation of stiffness across anatomical levels (i.e., joint, muscle, and tendon) in vivo has long been a challenge in biomechanics. Recent advances in electromyography (EMG)-driven musculoskeletal modeling have allowed the non-invasive estimation of stiffness during dynamic joint rotations. Nevertheless, validation has been limited to the joint level due to a lack of simultaneous in vivo experimental measurements of muscle and tendon stiffness. METHODS: With a focus on the triceps surae, we employed a novel perturbation-based experimental technique informed by dynamometry and ultrasonography to derive reference stiffness at the joint, muscle, and tendon levels simultaneously. Here, we propose a new EMG-driven model-based approach that does not require external joint perturbation, nor ultrasonography, to estimate multi-level stiffness. We present a novel set of closed-form equations that enables the person-specific tuning of musculoskeletal parameters dictating biological stiffness, including passive force-length relationships in modeled muscles and tendons. RESULTS: Calibrated EMG-driven musculoskeletal models estimated the reference data with average normalized root-mean-square error ≈ 20%. Moreover, only when calibrated tendons were approximately four times more compliant than typically modeled, our approach could estimate multi-level reference stiffness. CONCLUSION: EMG-driven musculoskeletal models can be calibrated on a larger set of reference data to provide more realistic values for the biomechanical variables across multiple anatomical levels. Moreover, the tendon models that are typically used in musculoskeletal modeling are too stiff. SIGNIFICANCE: Calibrated musculoskeletal models informed by experimental measurements give access to an augmented range of biomechanical variables that might not be easily measured with sensors alone.


Assuntos
Músculo Esquelético , Tendões , Humanos , Tendões/diagnóstico por imagem , Tendões/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Fenômenos Mecânicos , Eletromiografia/métodos , Perna (Membro)/fisiologia , Fenômenos Biomecânicos
2.
Neurorehabil Neural Repair ; 37(11-12): 786-798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877724

RESUMO

BACKGROUND: After mild stroke persistent balance limitations may occur, creating a risk factor for fear of falling, falls, and reduced activity levels. Objective. To investigate whether individuals in the chronic phase after mild stroke show balance and gait limitations, elevated fall risk, reduced balance confidence, and physical activity levels compared to healthy controls. METHODS: An observational case-control study was performed. Main outcomes included the Mini-Balance Evaluation Systems Test (mini-BEST), Timed Up and Go (TUG), 10-m Walking Test (10-MWT), and 6-item version Activity-specific Balance Confidence (6-ABC) scale which were measured in 1 session. Objectively measured daily physical activity was measured for 7 consecutive days. Fall rate in daily life was recorded for 12 months. Individuals after a mild stroke were considered eligible when they: (1) sustained a transient ischemic attack or stroke longer than 6 months ago, resulting in motor and/or sensory loss in the contralesional leg at the time of stroke, (2) showed (near-) complete motor function, that is, ≥24 points on the Fugl-Meyer Assessment-Lower Extremity (range: 0-28). RESULTS: Forty-seven healthy controls and 70 participants after mild stroke were included. Participants with stroke fell more than twice as often as healthy controls, had a 2 point lower median score on the mini-BEST, were 1.7 second slower on TUG, 0.6 km/h slower on the 10-MWT, and had a 12% lower 6-ABC score. Intensity for both total activity (8%) as well as walking activity (6%) was lower in the participants with stroke, while no differences were found in terms of duration. CONCLUSIONS: Individuals in the chronic phase after a mild stroke demonstrate persistent balance limitations and have an increased fall risk. Our results point at an unmet clinical need in this population.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estudos de Casos e Controles , Reabilitação do Acidente Vascular Cerebral/métodos , Medo , Acidente Vascular Cerebral/complicações , Marcha , Caminhada , Equilíbrio Postural
3.
Exp Brain Res ; 241(8): 2009-2018, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37382669

RESUMO

Human hands are complex biomechanical systems that allow for dexterous tasks with many degrees of freedom. Coordination of the fingers is essential for many activities of daily living and involves integrating sensory signals. During this sensory integration, the central nervous system deals with the uncertainty of sensory signals. When handling compliant objects, force and position are related. Interactions with stiff objects result in reduced position changes and increased force changes compared to compliant objects. Literature has shown sensory integration of force and position at the shoulder. Nevertheless, differences in sensory requirements between proximal and distal joints may lead to different proprioceptive representations, hence findings at proximal joints cannot be directly transferred to distal joints, such as the digits. Here, we investigate the sensory integration of force and position during pinching. A haptic manipulator rendered a virtual spring with adjustable stiffness between the index finger and the thumb. Participants had to blindly reproduce a force against the spring. In both visual reference trials and blind reproduction trials, the relation between pinch force and spring compression was constant. However, by covertly changing the spring characteristics in catch trials into an adjusted force-position relation, the participants' weighting of force and position could be revealed. In agreement with previous studies on the shoulder, participants relied more on force sense in trials with higher stiffness. This study demonstrated stiffness-dependent sensory integration of force and position feedback during pinching.


Assuntos
Atividades Cotidianas , Dedos , Humanos , Retroalimentação , Dedos/fisiologia , Propriocepção/fisiologia , Retroalimentação Sensorial/fisiologia
4.
J Neuroeng Rehabil ; 20(1): 19, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750869

RESUMO

BACKGROUND: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. METHODS: Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. RESULTS: Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. CONCLUSION: At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections.


Assuntos
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Acidente Vascular Cerebral , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Fármacos Neuromusculares/uso terapêutico , Articulação do Tornozelo , Músculo Esquelético , Espasticidade Muscular/etiologia , Acidente Vascular Cerebral/complicações , Resultado do Tratamento
5.
J Biomech ; 145: 111383, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403530

RESUMO

The simultaneous modulation of joint torque and stiffness enables humans to perform large repertoires of movements, while versatilely adapting to external mechanical demands. Multi-muscle force control is key for joint torque and stiffness modulation. However, the inability to directly measure muscle force in the intact moving human prevents understanding how muscle force causally links to joint torque and stiffness. Joint stiffness is predominantly estimated via joint perturbation-based experiments in combination with system identification techniques. However, these techniques provide joint-level stiffness estimations with no causal link to the underlying muscle forces. Moreover, the need for joint perturbations limits the generalizability and applicability to study natural movements. Here, we present an electromyography (EMG)-driven musculoskeletal modeling framework that can be calibrated to match reference joint torque and stiffness profiles simultaneously via a multi-term objective function. EMG-driven models calibrated on <2 s of reference torque and stiffness data could blindly estimate reference profiles across 100 s of data not used for calibration. Model calibrations using an objective function comprising torque and stiffness terms always provided less feasible solutions than an objective function comprising solely a torque term, thereby reducing the space of feasible muscle-tendon parameters. Results also showed the proposed framework's ability to estimate joint stiffness in unperturbed conditions, while capturing differences against stiffness profiles derived during perturbed conditions. The proposed framework may provide new ways for studying causal relationships between muscle force and joint torque and stiffness during movements in interaction with the environment, with broad implications across biomechanics, rehabilitation and robotics.


Assuntos
Robótica , Humanos
6.
Neuroimage Clin ; 36: 103178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084558

RESUMO

Transcranial direct current stimulation (tDCS) is a promising tool to improve and speed up motor rehabilitation after stroke, but inconsistent clinical effects refrain tDCS from clinical implementation. Therefore, this study aimed to assess the need for individualized tDCS configurations in stroke, considering interindividual variability in brain anatomy and motor function representation. We simulated tDCS in individualized MRI-based finite element head models of 21 chronic stroke subjects and 10 healthy age-matched controls. An anatomy-based stimulation target, i.e. the motor hand knob, was identified with MRI, whereas a motor function-based stimulation target was identified with EEG. For each subject, we simulated conventional anodal tDCS electrode configurations and optimized electrode configurations to maximize stimulation strength within the anatomical and functional target. The normal component of the electric field was extracted and compared between subjects with stroke and healthy, age-matched controls, for both targets, during conventional and optimized tDCS. Electrical field strength was significantly lower, more variable and more frequently in opposite polarity for subjects with stroke compared to healthy age-matched subjects, both for the anatomical and functional target with conventional, i.e. non-individualized, electrode configurations. Optimized, i.e. individualized, electrode configurations increased the electrical field strength in the anatomical and functional target for subjects with stroke but did not reach the same levels as in healthy subjects. Considering individual brain structure and motor function is crucial for applying tDCS in subjects with stroke. Lack of individualized tDCS configurations in subjects with stroke results in lower electric fields in stimulation targets, which may partially explain the inconsistent clinical effects of tDCS in stroke trials.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Acidente Vascular Cerebral/terapia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Cabeça
7.
Artigo em Inglês | MEDLINE | ID: mdl-35503817

RESUMO

Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (<5N) and the effect on the walking pattern was smaller than the within-subject variability during normal walking. Using a non-linear multibody dynamical model of swing leg dynamics, the hip, knee and ankle joint impedance were estimated at three time points during the swing phase for nine subjects walking at a speed of 0.5 m/s. The identified model was well able to predict the experimental responses for the hip and knee, since the mean variance accounted (VAF) for was 99% and 96%, respectively. The ankle lacked a consistent response and the mean VAF of the model fit was only 77%, and therefore the estimated ankle impedance was not reliable. The averaged across-subjects stiffness varied between the three time points within 34-66 and 0-3.5 Nm/rad Nm/rad for the hip and knee joint respectively. The damping varied between 1.9-4.6 and 0.02-0.14 Nms/rad Nms/rad for hip and knee respectively. The developed LOPER has a negligible effect on the unperturbed walking pattern and allows to identify hip and knee impedance during the swing phase.


Assuntos
Articulação do Joelho , Caminhada , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Impedância Elétrica , Marcha/fisiologia , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Caminhada/fisiologia
8.
Brain Topogr ; 35(2): 169-181, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35050427

RESUMO

Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.


Assuntos
Nociceptividade , Córtex Somatossensorial , Estimulação Elétrica/métodos , Potenciais Evocados , Humanos , Masculino , Nociceptividade/fisiologia , Córtex Somatossensorial/fisiologia
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4859-4862, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892297

RESUMO

Motion capture systems are extensively used to track human movement to study healthy and pathological movements, allowing for objective diagnosis and effective therapy of conditions that affect our motor system. Current motion capture systems typically require marker placements which is cumbersome and can lead to contrived movements.Here, we describe and evaluate our developed markerless and modular multi-camera motion capture system to record human movements in 3D. The system consists of several interconnected single-board microcomputers, each coupled to a camera (i.e., the camera modules), and one additional microcomputer, which acts as the controller. The system allows for integration with upcoming machine-learning techniques, such as DeepLabCut and AniPose. These tools convert the video frames into virtual marker trajectories and provide input for further biomechanical analysis.The system obtains a frame rate of 40 Hz with a sub-millisecond synchronization between the camera modules. We evaluated the system by recording index finger movement using six camera modules. The recordings were converted via trajectories of the bony segments into finger joint angles. The retrieved finger joint angles were compared to a marker-based system resulting in a root-mean-square error of 7.5 degrees difference for a full range metacarpophalangeal joint motion.Our system allows for out-of-the-lab motion capture studies while eliminating the need for reflective markers. The setup is modular by design, enabling various configurations for both coarse and fine movement studies, allowing for machine learning integration to automatically label the data. Although we compared our system for a small movement, this method can also be extended to full-body experiments in larger volumes.


Assuntos
Movimento , Fenômenos Biomecânicos , Coleta de Dados , Humanos , Movimento (Física) , Organotiofosfatos
10.
Front Hum Neurosci ; 15: 695366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858150

RESUMO

Background: Proprioception is important for regaining motor function in the paretic upper extremity after stroke. However, clinical assessments of proprioception are subjective and require verbal responses from the patient to applied proprioceptive stimuli. Cortical responses evoked by robotic wrist perturbations and measured by electroencephalography (EEG) may be an objective method to support current clinical assessments of proprioception. Objective: To establish whether evoked cortical responses reflect proprioceptive deficits as assessed by clinical scales and whether they predict upper extremity motor function at 26 weeks after stroke. Methods: Thirty-one patients with stroke were included. In week 1, 3, 5, 12, and 26 after stroke, the upper extremity sections of the Erasmus modified Nottingham Sensory Assessment (EmNSA-UE) and the Fugl-Meyer Motor Assessment (FM-UE) and the EEG responses (64 channels) to robotic wrist perturbations were measured. The extent to which proprioceptive input was conveyed to the affected hemisphere was estimated by the signal-to-noise ratio (SNR) of the evoked response. The relationships between SNR and EmNSA-UE as well as SNR and time after stroke were investigated using linear regression. Receiver-operating-characteristic curves were used to compare the predictive values of SNR and EmNSA-UE for predicting whether patients regained some selective motor control (FM-UE > 22) or whether they could only move their paretic upper extremity within basic limb synergies (FM-UE ≤ 22) at 26 weeks after stroke. Results: Patients (N = 7) with impaired proprioception (EmNSA-UE proprioception score < 8) had significantly smaller SNR than patients with unimpaired proprioception (N = 24) [EmNSA-UE proprioception score = 8, t(29) = 2.36, p = 0.03]. No significant effect of time after stroke on SNR was observed. Furthermore, there was no significant difference in the predictive value between EmNSA-UE and SNR for predicting motor function at 26 weeks after stroke. Conclusion: The SNR of the evoked cortical response does not significantly change as a function of time after stroke and differs between patients with clinically assessed impaired and unimpaired proprioception, suggesting that SNR reflects persistent damage to proprioceptive pathways. A similar predictive value with respect to EmNSA-UE suggests that SNR may be used as an objective predictor next to clinical sensory assessments for predicting motor function at 26 weeks after stroke.

11.
J Neurophysiol ; 126(4): 1015-1029, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406875

RESUMO

Motorized assessment of the stretch reflex is instrumental to gain understanding of the stretch reflex, its physiological origin and to differentiate effects of neurological disorders, like spasticity. Both short-latency (M1) and medium-latency (M2) stretch reflexes have been reported to depend on the velocity and acceleration of an applied ramp-and-hold perturbation. In the upper limb, M2 has also been reported to depend on stretch duration. However, wrong conclusions might have been drawn in previous studies as the interdependence of perturbation parameters (amplitude, duration, velocity, and acceleration) possibly created uncontrolled, confounding effects. We disentangled the duration-, velocity-, and acceleration-dependence and their interactions of the M1 and M2 stretch reflex in the ankle plantarflexors. To disentangle the parameter interdependence, 49 unique ramp-and-hold joint perturbations elicited reflexes in 10 healthy volunteers during a torque control task. Linear mixed model analysis showed that M1 depended on acceleration, not velocity or duration, whereas M2 depended on acceleration, velocity, and duration. Simulations of the muscle spindle Ia afferents coupled to a motoneuron pool corroborated these experimental findings. In addition, this simulation model did show a nonlinear M1 velocity- and duration-dependence for perturbation parameters outside the experimental scope. In conclusion, motorized assessment of the stretch reflex or spasticity using ramp-and-hold perturbations should be systematically executed and reported. Our systematic motorized and simulation assessments showed that M1 and M2 depend on acceleration, velocity, and duration of the applied perturbation. The simulation model suggested that these dependencies emerge from: muscle-tendon unit and muscle cross-bridge dynamics, Ia sensitivity to force and yank, and motoneuron synchronization.NEW & NOTEWORTHY Previous research and definitions of the stretch reflex and spasticity have focused on velocity-dependence. We showed that perturbation acceleration, velocity, and duration all shape the M1 and M2 response, often via nonlinear or interacting dependencies. Consequently, systematic execution and reporting of stretch reflex and spasticity studies, avoiding uncontrolled parameter interdependence, is essential for proper understanding of the reflex neurophysiology.


Assuntos
Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Músculo Esquelético/fisiologia , Reflexo de Estiramento/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
12.
Neuroimage ; 240: 118373, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246767

RESUMO

Neurophysiologic correlates of motor learning that can be monitored during neurorehabilitation interventions can facilitate the development of more effective learning methods. Previous studies have focused on the role of the beta band (14-30 Hz) because of its clear response during motor activity. However, it is difficult to discriminate between beta activity related to learning a movement and performing the movement. In this study, we analysed differences in the electroencephalography (EEG) power spectra of complex and simple explicit sequential motor tasks in healthy young subjects. The complex motor task (CMT) allowed EEG measurement related to motor learning. In contrast, the simple motor task (SMT) made it possible to control for EEG activity associated with performing the movement without significant motor learning. Source reconstruction of the EEG revealed task-related activity from 5 clusters covering both primary motor cortices (M1) and 3 clusters localised to different parts of the cingulate cortex (CC). We found no association between M1 beta power and learning, but the CMT produced stronger bilateral beta suppression compared to the SMT. However, there was a positive association between contralateral M1 theta (5-8 Hz) and alpha (8-12 Hz) power and motor learning, and theta and alpha power in the posterior mid-CC and posterior CC were positively associated with greater motor learning. These findings suggest that the theta and alpha bands are more related to motor learning than the beta band, which might merely relate to the level of perceived difficulty during learning.


Assuntos
Ritmo beta/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Ritmo Teta/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
13.
J Neural Eng ; 18(4)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33735847

RESUMO

Objective.Large structural brain changes, such as chronic stroke lesions, alter the current pathways throughout the patients' head and therefore have to be taken into account when performing transcranial direct current stimulation simulations.Approach.We implement, test and distribute the first MATLAB pipeline that automatically generates realistic and individualized volume conduction head models of chronic stroke patients, by combining the already existing software SimNIBS, for the mesh generation, and lesion identification with neighborhood data analysis, for the lesion identification. To highlight the impact of our pipeline, we investigated the sensitivity of the electric field distribution to the lesion location and lesion conductivity in 16 stroke patients' datasets.Main results.Our pipeline automatically generates 1 mm-resolution tetrahedral meshes including the lesion compartment in less than three hours. Moreover, for large lesions, we found a high sensitivity of the electric field distribution to the lesion conductivity value and location.Significance.This work facilitates optimizing electrode configurations with the goal to obtain more focal brain stimulations of the target volumes in rehabilitation for chronic stroke patients.


Assuntos
Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Cabeça , Humanos , Volume Sistólico
14.
J Neurosci Methods ; 353: 109106, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33626370

RESUMO

A sustained sensory stimulus with a periodic variation of intensity creates an electrophysiological brain response at associated frequencies, referred to as the steady-state evoked potential (SSEP). The SSEPs elicited by the periodic stimulation of nociceptors in the skin may represent activity of a brain network that is primarily involved in nociceptive processing. Exploring the behavior of this network could lead to valuable insights regarding the pathway from nociceptive stimulus to pain perception. We present a method to directly modulate the pulse rate of nociceptive afferents in the skin with a multisine waveform through intra-epidermal electric stimulation. The technique was demonstrated in healthy volunteers. Each subject was stimulated using a pulse sequence modulated by a multisine waveform of 3, 7 and 13 Hz. The EEG was analyzed for the presence of the base frequencies and associated (sub)harmonics. Topographies showed significant central and contralateral SSEP responses at 3, 7 and 13 Hz in respectively 7, 4 and 3 out of the 9 participants included for analysis. As such, we found that intra-epidermal stimulation with a multisine frequency modulated pulse sequence can generate nociceptive SSEPs. The possibility to stimulate the nociceptive system using multisine frequency modulated pulses offers novel opportunities to study the temporal dynamics of nociceptive processing.


Assuntos
Potenciais Evocados , Nociceptividade , Estimulação Elétrica , Eletroencefalografia , Humanos , Nociceptores , Percepção da Dor
15.
J Neuroeng Rehabil ; 18(1): 36, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596944

RESUMO

BACKGROUND: People with brain or neural injuries, such as cerebral palsy or spinal cord injury, commonly have joint hyper-resistance. Diagnosis and treatment of joint hyper-resistance is challenging due to a mix of tonic and phasic contributions. The parallel-cascade (PC) system identification technique offers a potential solution to disentangle the intrinsic (tonic) and reflexive (phasic) contributions to joint impedance, i.e. resistance. However, a simultaneous neurophysiological validation of both intrinsic and reflexive joint impedances is lacking. This simultaneous validation is important given the mix of tonic and phasic contributions to joint hyper-resistance. Therefore, the main goal of this paper is to perform a group-level neurophysiological validation of the PC system identification technique using electromyography (EMG) measurements. METHODS: Ten healthy people participated in the study. Perturbations were applied to the ankle joint to elicit reflexes and allow for system identification. Participants completed 20 hold periods of 60 seconds, assumed to have constant joint impedance, with varying magnitudes of intrinsic and reflexive joint impedances across periods. Each hold period provided a paired data point between the PC-based estimates and neurophysiological measures, i.e. between intrinsic stiffness and background EMG, and between reflexive gain and reflex EMG. RESULTS: The intrinsic paired data points, with all subjects combined, were strongly correlated, with a range of [Formula: see text] in both ankle plantarflexors and dorsiflexors. The reflexive paired data points were moderately correlated, with [Formula: see text] in the ankle plantarflexors only. CONCLUSION: An agreement with the neurophysiological basis on which PC algorithms are built is necessary to support its clinical application in people with joint hyper-resistance. Our results show this agreement for the PC system identification technique on group-level. Consequently, these results show the validity of the use of the technique for the integrated assessment and training of people with joint hyper-resistance in clinical practice.


Assuntos
Algoritmos , Contratura/fisiopatologia , Eletromiografia/métodos , Doenças Neuromusculares/complicações , Processamento de Sinais Assistido por Computador , Adulto , Articulação do Tornozelo , Contratura/diagnóstico , Contratura/etiologia , Impedância Elétrica , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Doenças Neuromusculares/fisiopatologia , Sistemas On-Line
16.
Front Rehabil Sci ; 2: 742030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36188848

RESUMO

People with spasticity, i.e., stretch hyperreflexia, have a limited functional independence and mobility. While a broad range of spasticity treatments is available, many treatments are invasive, non-specific, or temporary and might have negative side effects. Operant conditioning of the stretch reflex is a promising non-invasive paradigm with potential long-term sustained effects. Within this conditioning paradigm, seated participants have to reduce the mechanically elicited reflex response using biofeedback of reflex magnitude quantified using electromyography (EMG). Before clinical application of the conditioning paradigm, improvements are needed regarding the time-intensiveness and slow learning curve. Previous studies have shown that gamification of biofeedback can improve participant motivation and long-term engagement. Moreover, quantification of reflex magnitude for biofeedback using reflexive joint impedance may obtain similar effectiveness within fewer sessions. Nine healthy volunteers participated in the study, split in three groups. First, as a reference the "Conventional" group received EMG- and bar-based biofeedback similar to previous research. Second, we explored feasibility of game-based biofeedback with the "Gaming" group receiving EMG- and game-based biofeedback. Third, we explored feasibility of game- and impedance-based biofeedback with the "Impedance" group receiving impedance and game-based biofeedback. Participants completed five baseline sessions (without reflex biofeedback) and six conditioning sessions (with reflex biofeedback). Participants were instructed to reduce reflex magnitude without modulating background activity. The Conventional and Gaming groups showed feasibility of the protocol in 2 and 3 out of 3 participants, respectively. These participants achieved a significant Soleus short-latency (M1) within-session reduction in at least -15% in the 4th-6th conditioning session. None of the Impedance group participants showed any within-session decrease in Soleus reflex magnitude. The feasibility in the EMG- and game-based biofeedback calls for further research on gamification of the conditioning paradigm to obtain improved participant motivation and engagement, while achieving long-term conditioning effects. Before clinical application, the time-intensiveness and slow learning curve of the conditioning paradigm remain an open challenge.

17.
J Hand Ther ; 34(4): 567-576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32893099

RESUMO

INTRODUCTION: Sensorimotor control can be disturbed because of pain and trauma. There is scarce comprehension about which component of the sensorimotor system would benefit the most from treatment in distal radius fracture (DRF). PURPOSE OF THE STUDY: The purpose of this study was to determine whether the sensorimotor control of subjects with a history of DRF impaired compared with healthy subjects. If so, which component of the sensorimotor system is most affected. METHODS: Nine healthy participants and 11 participants with a DRF history executed posture and reproduction tasks in interaction with a robotic wrist manipulator. A posture task with force perturbations assess sensorimotor control. Position and force reproduction tasks assessed sensory feedback. Electromyography recorded the muscle activity to study the motor part of the sensorimotor system. STUDY DESIGN: Cross-sectional case-control. RESULTS: The results showed that the motor responses to the perturbations during the posture task did not differ significantly, whereas the position reproduction did significantly differ between the 2 groups. Moreover, participants with a DRF history did not adapt to the changed dynamics of the environment during the posture task, whereas the controls did. DISCUSSION: The results of this study imply that processing of sensory position feedback is impaired in people with a DRF history while sensorimotor control during a posture task is unaffected. A possible explanation for these results is that different neural networks are involved during reproduction and posture tasks. CONCLUSIONS: A history of DRF is related to disturbed processing of sensory feedback of the sensorimotor system, especially the Joint Position Sense, which leads to an impairment in detecting a changed environment and adapting to it. Impaired Joint Position Sense and thereby the inability to adapt adequately to a changing environment should be taken into account during the rehabilitation of patients with DRF.


Assuntos
Fraturas do Rádio , Idoso , Estudos Transversais , Eletromiografia , Retroalimentação Sensorial , Humanos , Articulação do Punho
18.
IEEE Trans Biomed Eng ; 68(3): 948-958, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746080

RESUMO

OBJECTIVE: Nonlinear modeling of cortical responses (EEG) to wrist perturbations allows for the quantification of cortical sensorimotor function in healthy and neurologically impaired individuals. A common model structure reflecting key characteristics shared across healthy individuals may provide a reference for future clinical studies investigating abnormal cortical responses associated with sensorimotor impairments. Thus, the goal of our study is to identify this common model structure and therefore to build a nonlinear dynamic model of cortical responses, using nonlinear autoregressive-moving-average model with exogenous inputs (NARMAX). METHODS: EEG was recorded from ten participants when receiving continuous wrist perturbations. A common model structure detection method was developed for identifying a common NARMAX model structure across all participants, with individualized parameter values. The results were compared to conventional subject-specific models. RESULTS: The proposed method achieved 93.91% variance accounted for (VAF) when implementing a one-step-ahead prediction and around 50% VAF for a k-step ahead prediction (k = 3), without a substantial drop of VAF as compare to subject-specific models. The estimated common structure suggests that the measured cortical response is a mixed outcome of the nonlinear transformation of external inputs and local neuronal interactions or inherent neuronal dynamics at the cortex. CONCLUSION: The proposed method well determined the common characteristics across subjects in the cortical responses to wrist perturbations. SIGNIFICANCE: It provides new insights into the human sensorimotor nervous system in response to somatosensory inputs and paves the way for future translational studies on assessments of sensorimotor impairments using our modeling approach.


Assuntos
Dinâmica não Linear , Punho , Humanos , Articulação do Punho
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4835-4838, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019073

RESUMO

Human joint impedance is a fundamental property of the neuromuscular system and describes the mechanical behavior of a joint. The identification of the lower limbs' joints impedance during locomotion is a key element to improve the design and control of active prostheses, orthoses, and exoskeletons. Joint impedance changes during locomotion and can be described by a linear time-varying (LTV) model. Several system identification techniques have been developed to retrieve LTV joint impedance, but these methods often require joint impedance to be consistent over multiple gait cycles. Given the inherent variability of neuromuscular control actions, this requirement is not realistic for the identification of human data. Here we propose the kernel-based regression (KBR) method with a locally periodic kernel for the identification of LTV ankle joint impedance. The proposed method considers joint impedance to be periodic yet allows for variability over the gait cycles. The method is evaluated on a simulation of joint impedance during locomotion. The simulation lasts for 10 gait cycles of 1.4 s each and has an output SNR of 15 dB. Two conditions were simulated: one in which the profile of joint impedance is periodic, and one in which the amplitude and the shape of the profile slightly vary over the periods. A Monte Carlo analysis is performed and, for both conditions, the proposed method can reconstruct the noiseless simulation output signal and the profiles of the time-varying joint impedance parameters with high accuracy (mean VAF ~ 99.9% and mean normalized RMSE of the parameters 1.33-4.06%).The proposed KBR method with a locally periodic kernel allows for the identification of periodic time-varying joint impedance with cycle-to-cycle variability.


Assuntos
Articulação do Tornozelo , Tornozelo , Impedância Elétrica , Marcha , Humanos , Locomoção
20.
Biomed Eng Online ; 19(1): 29, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393271

RESUMO

BACKGROUND: Balance training improves postural control in Parkinson's disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program, are poorly understood. OBJECTIVES: We investigated the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and novel model-based measures. METHODS: Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training. Center-of-pressure (COP) was recorded at four time-points during the training (pre-, week 2, week 4, and post-training). COP was used to calculate the sway measures and to identify the parameters of a patient-specific postural control model, at each time-point. The posturographic and model-based measures constituted the two sets of stability- and flexibility-related measures. RESULTS: Mobility- and flexibility-related measures showed a continuous improvement during the balance-training program. In particular, mobility improved at mid-training and continued to improve to the end of the training, whereas flexibility-related measures reached significance only at the end. The progression in the balance- and stability-related measures was characterized by early improvements over the first 3 to 4 weeks of training, and reached a plateau for the rest of the training. CONCLUSIONS: The progression in balance and postural stability is achieved earlier and susceptible to plateau out, while mobility and flexibility continue to improve during the balance training.


Assuntos
Aprendizagem , Movimento/fisiologia , Doença de Parkinson/fisiopatologia , Equilíbrio Postural , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...