Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Vis Exp ; (182)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35467656

RESUMO

RNA is a biopolymer present in all domains of life, and its interactions with other molecules and/or reactive species, e.g., DNA, proteins, ions, drugs, and free radicals, are ubiquitous. As a result, RNA undergoes various reactions that include its cleavage, degradation, or modification, leading to biologically relevant species with distinct functions and implications. One example is the oxidation of guanine to 7,8-dihydro-8-oxoguanine (8-oxoG), which may occur in the presence of reactive oxygen species (ROS). Overall, procedures that characterize such products and transformations are largely valuable to the scientific community. To this end, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry is a widely used method. The present protocol describes how to characterize RNA fragments formed after enzymatic treatment. The chosen model uses a reaction between RNA and the exoribonuclease Xrn-1, where enzymatic digestion is halted at oxidized sites. Two 20-nucleotide long RNA sequences [5'-CAU GAA ACA A(8-oxoG)G CUA AAA GU] and [5'-CAU GAA ACA A(8-oxoG)(8-oxoG) CUA AAA GU] were obtained via solid-phase synthesis, quantified by UV-vis spectroscopy, and characterized via MALDI-TOF. The obtained strands were then (1) 5'-phosphorylated and characterized via MALDI-TOF; (2) treated with Xrn-1; (3) filtered and desalted; (4) analyzed via MALDI-TOF. This experimental setup led to the unequivocal identification of the fragments associated with the stalling of Xrn-1: [5'-H2PO4-(8-oxoG)G CUA AAA GU], [5'-H2PO4-(8-oxoG)(8-oxoG) CUA AAA GU], and [5'-H2PO4-(8-oxoG) CUA AAA GU]. The described experiments were carried out with 200 picomols of RNA (20 pmol used for MALDI analyses); however, lower amounts may result in detectable peaks with spectrometers using laser sources with more power than the one used in this work. Importantly, the described methodology can be generalized and potentially extended to product identification for other processes involving RNA and DNA, and may aid in the characterization/elucidation of other biochemical pathways.


Assuntos
DNA , RNA , Sequência de Bases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Front Mol Biosci ; 8: 780315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869601

RESUMO

Understanding how oxidatively damaged RNA is handled intracellularly is of relevance due to the link between oxidized RNA and the progression/development of some diseases as well as aging. Among the ribonucleases responsible for the decay of modified (chemically or naturally) RNA is the exonuclease Xrn-1, a processive enzyme that catalyzes the hydrolysis of 5'-phosphorylated RNA in a 5'→3' direction. We set out to explore the reactivity of this exonuclease towards oligonucleotides (ONs, 20-nt to 30-nt long) of RNA containing 8-oxo-7,8-dihydroguanosine (8-oxoG), obtained via solid-phase synthesis. The results show that Xrn-1 stalled at sites containing 8-oxoG, evidenced by the presence of a slower moving band (via electrophoretic analyses) than that observed for the canonical analogue. The observed fragment(s) were characterized via PAGE and MALDI-TOF to confirm that the oligonucleotide fragment(s) contained a 5'-phosphorylated 8-oxoG. Furthermore, the yields for this stalling varied from app. 5-30% with 8-oxoG located at different positions and in different sequences. To gain a better understanding of the decreased nuclease efficiency, we probed: 1) H-bonding and spatial constraints; 2) anti-syn conformational changes; 3) concentration of divalent cation; and 4) secondary structure. This was carried out by introducing methylated or brominated purines (m1G, m6,6A, or 8-BrG), probing varying [Mg2+], and using circular dichroism (CD) to explore the formation of structured RNA. It was determined that spatial constraints imposed by conformational changes around the glycosidic bond may be partially responsible for stalling, however, the results do not fully explain some of the observed higher stalling yields. We hypothesize that altered π-π stacking along with induced H-bonding interactions between 8-oxoG and residues within the binding site may also play a role in the decreased Xrn-1 efficiency. Overall, these observations suggest that other factors, yet to be discovered/established, are likely to contribute to the decay of oxidized RNA. In addition, Xrn-1 degraded RNA containing m1G, and stalled mildly at sites where it encountered m6,6A, or 8-BrG, which is of particular interest given that the former two are naturally occurring modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...