Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37969032

RESUMO

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Sinalização das MAP Quinases/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatias Congênitas/genética
2.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266292

RESUMO

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
3.
Am J Med Genet A ; 182(4): 866-876, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913576

RESUMO

RASopathies caused by germline pathogenic variants in genes that encode RAS pathway proteins. These disorders include neurofibromatosis type 1 (NF1), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), and Costello syndrome (CS), and others. RASopathies are characterized by heterogenous manifestations, including congenital heart disease, failure to thrive, and increased risk of cancers. Previous work led by the NCI Pediatric Oncology Branch has altered the natural course of one of the key manifestations of the RASopathy NF1. Through the conduct of a longitudinal cohort study and early phase clinical trials, the MEK inhibitor selumetinib was identified as the first active therapy for the NF1-related peripheral nerve sheath tumors called plexiform neurofibromas (PNs). As a result, selumetinib was granted breakthrough therapy designation by the FDA for the treatment of PN. Other RASopathy manifestations may also benefit from RAS targeted therapies. The overall goal of Advancing RAS/RASopathy Therapies (ART), a new NCI initiative, is to develop effective therapies and prevention strategies for the clinical manifestations of the non-NF1 RASopathies and for tumors characterized by somatic RAS mutations. This report reflects discussions from a February 2019 initiation meeting for this project, which had broad international collaboration from basic and clinical researchers and patient advocates.


Assuntos
Síndrome de Costello/terapia , Displasia Ectodérmica/terapia , Insuficiência de Crescimento/terapia , Cardiopatias Congênitas/terapia , Terapia de Alvo Molecular , Mutação , Neurofibromatose 1/terapia , Síndrome de Noonan/terapia , Proteínas ras/antagonistas & inibidores , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Síndrome de Costello/genética , Síndrome de Costello/patologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Fácies , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Colaboração Intersetorial , National Cancer Institute (U.S.) , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Relatório de Pesquisa , Transdução de Sinais , Estados Unidos , Proteínas ras/genética
4.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31825160

RESUMO

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Assuntos
Doenças Genéticas Inatas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas ras/genética , Doenças Genéticas Inatas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Transdução de Sinais/genética
5.
Am J Med Genet A ; 176(12): 2924-2929, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302932

RESUMO

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas ras/genética , Animais , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Desenvolvimento Humano , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organogênese/genética , Transdução de Sinais , Síndrome , Proteínas ras/metabolismo
6.
Am J Med Genet A ; 170(8): 1959-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155140

RESUMO

The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation-arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field. © 2016 Wiley Periodicals, Inc.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Financiamento de Capital , Ensaios Clínicos como Assunto , Família , Doenças Genéticas Inatas/diagnóstico , Humanos , Colaboração Intersetorial , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas ras/genética
7.
Am J Med Genet A ; 167A(8): 1741-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900621

RESUMO

"The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion.


Assuntos
Doenças Genéticas Inatas/genética , Sistema de Sinalização das MAP Quinases , Proteínas ras/metabolismo , Doenças Genéticas Inatas/metabolismo , Humanos
8.
Am J Med Genet A ; 152A(1): 4-24, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20014119

RESUMO

The RASopathies are a group of genetic syndromes caused by germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway. Some of these syndromes are neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, LEOPARD syndrome and Legius syndrome. Their common underlying pathogenetic mechanism brings about significant overlap in phenotypic features and includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, GI and ocular abnormalities, and a predisposition to cancer. The proceedings from the symposium "Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back" chronicle the timely and typical research symposium which brought together clinicians, basic scientists, physician-scientists, advocate leaders, trainees, students and individuals with Ras syndromes and their families. The goals, to discuss basic science and clinical issues, to set forth a solid framework for future research, to direct translational applications towards therapy and to set forth best practices for individuals with RASopathies were successfully meet with a commitment to begin to move towards clinical trials.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas ras/metabolismo , Humanos , Síndrome
10.
Am J Med Genet A ; 133A(1): 1-12, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15637729

RESUMO

Costello syndrome is a distinctive multiple congenital anomaly syndrome, characterized by loose soft skin with deep palmar and plantar creases, loose joints, distinctive coarse facial features, skeletal abnormalities, cardiac abnormalities (cardiovascular malformation (CVM), hypertrophic cardiomyopathy, tachycardia), predisposition to malignancy, developmental delays, and mental retardation. Previous studies with cultured fibroblasts from individuals with Costello syndrome demonstrate excessive accumulation of chondroitin sulfate-bearing proteoglycans, associated with both impaired formation of elastic fibers and an unusually high rate of cellular proliferation. Despite multiple clinical reports of cardiac abnormalities, there has been only one previously published report describing post-mortem findings in hearts from Costello syndrome patients. Here we provide a detailed description of the post-mortem findings of the hearts of three children with Costello syndrome. Routine histological examination and results of targeted histochemical and immunohistochemical studies revealed that in addition to cardiomyocyte hypertrophy, these hearts also demonstrated massive pericellular and intracellular accumulation of chondroitin sulfate-bearing proteoglycans and a marked reduction of elastic fibers. Normal stroma was replaced by multifocal collagenous fibrosis. Most peculiar was the finding that the bulk of the chondroitin sulfate accumulated in these Costello syndrome hearts is a chondroitin-6-sulfate. In contrast, deposition of chondroitin-4 sulfate was below the level detected in normal hearts. We propose that an imbalance in sulfation of chondroitin sulfate molecules and subsequent accumulation of chondroitin-6-sulfate in cardiomyocytes contribute to the development of the hypertrophic cardiomyopathy of Costello syndrome.


Assuntos
Anormalidades Múltiplas/patologia , Cardiomiopatia Hipertrófica/patologia , Sulfatos de Condroitina/metabolismo , Miocárdio/metabolismo , Anormalidades Múltiplas/metabolismo , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Face/anormalidades , Evolução Fatal , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Miocárdio/patologia , Anormalidades da Pele , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...