Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 16(1): 220, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600471

RESUMO

BACKGROUND: Bovine tuberculosis and tuberculosis are chronic infectious diseases caused by the Mycobacterium tuberculosis complex members, Mycobacterium bovis and Mycobacterium tuberculosis, respectively. Infection with M. bovis and M. tuberculosis have significant implications for wildlife species management, public health, veterinary disease control, and conservation endeavours. RESULTS: Here we describe the first use of the VetMAX™ Mycobacterium tuberculosis complex (MTBC) DNA quantitative real-time polymerase chain reaction (qPCR) detection kit for African wildlife samples. DNA was extracted from tissues harvested from 48 African buffaloes and MTBC DNA was detected (test-positive) in all 26 M. bovis culture-confirmed animals with an additional 12 PCR-positive results in culture-negative buffaloes (originating from an exposed population). Of six MTBC-infected African rhinoceros tested, MTBC DNA was detected in antemortem and postmortem samples from five animals. The PCR was also able to detect MTBC DNA in samples from two African elephants confirmed to have M. bovis and M. tuberculosis infections (one each). Culture-confirmed uninfected rhinoceros and elephants' samples tested negative in the PCR assay. CONCLUSIONS: These results suggest this new detection kit is a sensitive screening test for the detection of MTBC-infected African buffaloes, African elephants and white rhinoceros.


Assuntos
Mycobacterium bovis/isolamento & purificação , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Tuberculose/veterinária , Animais , Búfalos/microbiologia , DNA/análise , Elefantes/microbiologia , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Perissodáctilos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia
2.
Virus Genes ; 30(2): 279-96, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15744583

RESUMO

The objective of this study was to investigate the molecular mechanisms of neurobiological processes involved in the degeneration of the central nervous system. The bovine spongiform encephalopathy (BSE) was used as experimental model system for investigation of transmissible spongiform encephalopathy (TSE). The experimental strategy was to evaluate the possibility for protection of bovine PrP(C) transgenic mice against a bovine PrP(Sc) infection by DNA vaccination using the complete or partial cDNA sequences of the bovine prion protein. Three recombinant plasmids pCR3.1-EX-PrP-BSE-C20 (C20), pCR3.1-EX-PrP-BSE-90-235-C4 (C4), and pCR3.1-EX-PrP-BSE-106-131-C14 (C14) were constructed. These mammalian expression vectors harbor complete (C20) or partial (C4 and C14) cDNA sequences of the Bos taurus PrP(C) (BTPrP(C)) encoding for amino acid residues 1-264 (C20), 90-235 (C4), and 106-131 (C14) of the BTPrP(C). Transgenic mice harboring and expressing BTPrP(C) were generated using the donor strain C57/CBA, receptor strain Swiss mouse, and recombinant plasmid MoPrPXho-boPrP. Crossing of positive transgenic mice to bovine PrP and negative to murine PrP with 129/OLA (murine PrP-/-) and C57BL6x129/OLA (murine PrP+/-) mice was carried out to amplify the colony of transgenic mice termed bovine PrP(C) transgenic Swiss mice (BTPrP-TgM). The capabilities of C20, C4, and C14 to express the corresponding cDNA sequence of BTPrP(C) in vitro and in vivo were confirmed prior to DNA vaccination of the BTPrP-TgM using NIH 3T3 cells and BALB/c mice, respectively. In order to prove the capability of the constructed expression vectors to protect BTPrP-TgM in vivo against a BSE infection 80 female BTPrP-TgM were vaccinated intramuscularly and subcutaneously with DNA of the plasmids C20, C4, C14, and parental vector pCR3.1 (100 microg DNA corresponding to about 26-30 pmol DNA/animal and application) in four groups (each consists of 20 animals). DNA vaccination was followed by three additional boosters. The vaccinated animals (15 animals of each group) were challenged twice per oral with homogenates of brain material obtained from BSE cattle containing the infectious PrP(Sc) (100 microl/animal which corresponds to 15 mg of a 15% brain homogenate). The first and second challenge experiments were performed 76-83 and 181 days post DNA vaccination, respectively. A part of the vaccinated animals (3-5 animals of each group) that served as internal negative control were mock infected using the brain homogenate of healthy cattle or Phosphate saline buffer (PBS). A variety of symptoms and clinical pictures were observed during the monitoring of DNA vaccinated animals. However, the observed diseases seem to be similar in all experimental animal groups. After an observation period of 14 months post the second challenge experiment the remaining animals (some animals died or were sacrificed when moribund during the study) were sacrificed after expiration of the experimental schedule. The right hemisphere of the brain and a half of the spleen tissue of the individual animals were used for detection of PrP(Sc) by Western blot analysis. The misfolded bovine PrP(Sc) was not detected in the brain or spleen tissues of those animals that were vaccinated with DNA of C20, which was able to express the complete bovine PrP(C) protein in vitro and in vivo. In contrast, the bovine PrP(Sc) was detected in the brain or spleen tissues of animals that were DNA vaccinated with DNA of the parental vector pCR3.1, with DNA of C4, or with DNA of C14. The results of these studies underline that the constructed expression vector C20 possesses the protective capacity to inhibit the formation of misfolded bovine PrP(Sc) in BTPrP-TgM under the conditions used. A delay of occurrence of TSE-specific symptoms in the majority of the vaccinated animals seems to be due to the prolonged incubation time of BSE infection.


Assuntos
Proteínas PrPC/genética , Proteínas PrPC/imunologia , Proteínas PrPSc/patogenicidade , Doenças Priônicas/prevenção & controle , Vacinas de DNA/genética , Vacinas de DNA/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , DNA Complementar/genética , Feminino , Expressão Gênica , Vetores Genéticos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Dados de Sequência Molecular , Células NIH 3T3 , Plasmídeos/genética , Doenças Priônicas/genética , Doenças Priônicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...