Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826303

RESUMO

2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.

2.
Proc Natl Acad Sci U S A ; 121(12): e2306818121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489386

RESUMO

Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.


Assuntos
Actinas , Proteínas de Membrana , Movimento Celular , Fenômenos Físicos , Fenótipo , Actinas/metabolismo
3.
Mol Microbiol ; 121(3): 578-592, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308564

RESUMO

Pathogenic Rhodococcus equi release the virulence-associated protein A (VapA) within macrophage phagosomes. VapA permeabilizes phagosome and lysosome membranes and reduces acidification of both compartments. Using biophysical techniques, we found that VapA interacts with model membranes in four steps: (i) binding, change of mechanical properties, (ii) formation of specific membrane domains, (iii) permeabilization within the domains, and (iv) pH-specific transformation of domains. Biosensor data revealed that VapA binds to membranes in one step at pH 6.5 and in two steps at pH 4.5 and decreases membrane fluidity. The integration of VapA into lipid monolayers was only significant at lateral pressures <20 mN m-1 indicating preferential incorporation into membrane regions with reduced integrity. Atomic force microscopy of lipid mono- and bilayers showed that VapA increased the surface heterogeneity of liquid disordered domains. Furthermore, VapA led to the formation of a new microstructured domain type and, at pH 4.5, to the formation of 5 nm high domains. VapA binding, its integration and lipid domain formation depended on lipid composition, pH, protein concentration and lateral membrane pressure. VapA-mediated permeabilization is clearly distinct from that caused by classical microbial pore formers and is a key contribution to the multiplication of Rhodococcus equi in phagosomes.


Assuntos
Rhodococcus equi , Proteína Estafilocócica A , Virulência , Proteína Estafilocócica A/metabolismo , Fatores de Virulência/metabolismo , Rhodococcus equi/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeos
4.
Nanoscale ; 10(47): 22504-22519, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30480299

RESUMO

Biological adhesion is essential for all motile cells and generally limits locomotion to suitably functionalized substrates displaying a compatible surface chemistry. However, organisms that face vastly varying environmental challenges require a different strategy. The model organism Dictyostelium discoideum (D.d.), a slime mould dwelling in the soil, faces the challenge of overcoming variable chemistry by employing the fundamental forces of colloid science. To understand the origin of D.d. adhesion, we realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy we could show that experimental force curves upon retraction exhibit two regimes. The first part up to the critical adhesion force can be described in terms of a continuum model, while the second regime of the curve beyond the critical adhesion force is governed by stochastic unbinding of individual binding partners and bond clusters. We found that D.d. relies on adhesive interactions based on EDL-DLVO (Electrical Double Layer-Derjaguin-Landau-Verwey-Overbeek) forces and contributions from the glycocalix and specialized adhesion molecules like sadA. This versatile mechanism allows the cells to adhere to a large variety of natural surfaces under various conditions.


Assuntos
Adesão Celular , Dictyostelium/citologia , Microscopia de Força Atômica , Adesividade , Coloides/química , Glicocálix/química , Proteínas de Fluorescência Verde/química , Interações Hidrofóbicas e Hidrofílicas , Íons , Fenômenos Mecânicos , Nanopartículas/química , Nanotecnologia , Análise Espectral , Eletricidade Estática , Propriedades de Superfície , Molhabilidade
5.
J Occup Med Toxicol ; 5: 18, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20602750

RESUMO

AIM: Sleep disturbances induce proinflammatory immune responses, which might increase cardiovascular disease risk. So far the effects of acute sleep deprivation and chronic sleep illnesses on the immune system have been investigated. The particular impact of shift work induced chronic circadian disruption on specific immune responses has not been addressed so far. METHODS: Pittsburgh-Sleep-Quality-Index (PSQI) questionnaire and blood sampling was performed by 225 shift workers and 137 daytime workers. As possible markers the proinflammatory cytokines IL-6 and TNF-alpha and lymphocyte cell count were investigated. A medical examination was performed and biometrical data including age, gender, height, weight, waist and hip circumference and smoking habits were collected by a structured interview. RESULTS: Shift workers had a significantly higher mean PSQI score than day workers (6.73 vs. 4.66; p < 0.001). Day workers and shift workers had similar serum levels of IL-6 (2.30 vs. 2.67 resp.; p = 0.276), TNF-alpha (5.58 vs. 5.68, resp.; p = 0.841) or lymphocytes count (33.68 vs. 32.99, resp.; p = 0.404). Furthermore there were no differences in cytokine levels (IL-6 p = 0.761; TNF-alpha p = 0.759) or lymphocyte count (p = 0.593) comparing the sleep quality within the cohorts. When this calculation of sleep quality was stratified by shift and day workers irrespective of their sleep quality day workers and shift workers had similar serum levels of IL-6, TNF-alpha or lymphocytes count. Multiple linear regression analysis showed a significant correlation of lymphocytes count and smoking habits. CONCLUSION: Shift work induces chronic sleep debt. Our data reveals that chronic sleep debt might not always lead to an activation of the immune system, as we did not observe differences in lymphocyte count or level of IL-6 or TNF-alpha serum concentration between shift workers and day workers. Therefore chronic sleep restriction might be eased by a long-term compensating immune regulation which (in healthy) protects against an overstimulation of proinflammatory immune mechanisms and moderates metabolic changes, as they are known from short-term sleep deprivation or sleep related breathing disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...