Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 010102, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20866550

RESUMO

On the basis of the stationary Schrödinger equation, the virial theorem in an inhomogeneous external field for the canonical ensemble is proved. It is shown that the difference in the form of virial theorem is conditioned by the value of the wave-function derivative on the surface of the volume, surrounding the system under consideration. The stress tensor in such a system is determined by the average values of the wave-function space derivatives.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 1): 011107, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18351818

RESUMO

The problem of diffusion in a time-dependent (and generally inhomogeneous) external field is considered on the basis of a generalized master equation with two times, introduced by Trigger and co-authors [S. A. Trigger, G. J. F. van Heijst, and P. P. J. M. Schram, Physica A 347, 77 (2005); J. Phys.: Conf. Ser. 11, 37 (2005)]. We consider the case of the quasi-Fokker-Planck approximation, when the probability transition function for diffusion (PTD function) does not possess a long tail in coordinate space and can be expanded as a function of instantaneous displacements. The more complicated case of long tails in the PTD will be discussed separately. We also discuss diffusion on the basis of hydrodynamic and kinetic equations and show the validity of the phenomenological approach. A type of "collision" integral is introduced for the description of diffusion in a system of particles, which can transfer from a moving state to the rest state (with some waiting time distribution). The solution of the appropriate kinetic equation in the external field also confirms the phenomenological approach of the generalized master equation.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 2): 066403, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15244741

RESUMO

Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral conserving the number of particles, is solved. Dispersion relation is obtained and analyzed. New modes are found. Collisions are shown not to affect the Jeans instability criterion. Although the instability growth rate diminishes, the collisions they cannot quench the instability. However, the oscillation spectrum is modified significantly: even in the neighborhood of the threshold frequency omega=0 (separating stable and unstable modes) the spectrum of oscillations can strongly depend on the collision frequency. Propagating (rather than aperiodic) modes are also found. These modes, however, are strongly damped.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...