Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycotoxin Res ; 39(4): 405-420, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470898

RESUMO

This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FUmix). This FUmix contained fusaric acid and fumonisin B1, B2 and B3. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FUmix; DON-CON; and DON-FUmix. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FUmix toxins was 12,700 and 100 µg/kg feed in the diets with and without FUmix, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FUmix and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FUmix (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FUmix affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FUmix were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FUmix (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FUmix (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FUmix contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FUmix and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.


Assuntos
Fusarium , Micotoxinas , Oncorhynchus mykiss , Animais , Micotoxinas/análise , Fusarium/metabolismo , Glicogênio/metabolismo , Ração Animal/análise , Contaminação de Alimentos/análise
2.
Toxins (Basel) ; 13(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198924

RESUMO

The first part of this study evaluates the occurrence of mycotoxin patterns in feedstuffs and fish feeds. Results were extrapolated from a large data pool derived from wheat (n = 857), corn (n = 725), soybean meal (n = 139) and fish feed (n = 44) samples in European countries and based on sample analyses by liquid chromatography/tandem mass spectrometry (LC-MS/MS) in the period between 2012-2019. Deoxynivalenol (DON) was readily present in corn (in 47% of the samples) > wheat (41%) > soybean meal (11%), and in aquafeeds (48%). Co-occurrence of mycotoxins was frequently observed in feedstuffs and aquafeed samples. For example, in corn, multi-mycotoxin occurrence was investigated by Spearman's correlations and odd ratios, and both showed co-occurrence of DON with its acetylated forms (3-AcDON, 15-AcDON) as well as with zearalenone (ZEN). The second part of this study summarizes the existing knowledge on the effects of DON on farmed fish species and evaluates the risk of DON exposure in fish, based on data from in vivo studies. A meta-analytical approach aimed to estimate to which extent DON affects feed intake and growth performance in fish. Corn was identified as the ingredient with the highest risk of contamination with DON and its acetylated forms, which often cannot be detected by commonly used rapid detection methods in feed mills. Periodical state-of-the-art mycotoxin analyses are essential to detect the full spectrum of mycotoxins in fish feeds aimed to prevent detrimental effects on farmed fish and subsequent economic losses for fish farmers. Because levels below the stated regulatory limits can reduce feed intake and growth performance, our results show that the risk of DON contamination is underestimated in the aquaculture industry.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Micotoxinas/análise , Micotoxinas/toxicidade , Animais , Aquicultura , Monitoramento Ambiental , Europa (Continente) , Peixes/crescimento & desenvolvimento
3.
Sci Rep ; 11(1): 8221, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859242

RESUMO

Sustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.


Assuntos
Ciclídeos , Digestão/fisiologia , Enzimas , Microbioma Gastrointestinal/fisiologia , Probióticos , 6-Fitase/administração & dosagem , 6-Fitase/farmacocinética , Ração Animal , Animais , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Dieta , Suplementos Nutricionais , Enzimas/administração & dosagem , Enzimas/farmacocinética , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Cinética , Interações Microbianas/fisiologia , Probióticos/administração & dosagem , Probióticos/farmacocinética , Xilosidases/administração & dosagem , Xilosidases/farmacocinética
4.
Front Physiol ; 10: 453, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068834

RESUMO

In aquaculture, fish may be exposed to sub-optimal rearing conditions, which generate a stress response if full adaptation is not displayed. However, our current knowledge of several coexisting factors that may give rise to a stress response is limited, in particular when both chronic and acute stressors are involved. This study investigated changes in metabolic parameters, oxidative stress and innate immune markers in a rainbow trout (Oncorhynchus mykiss) isogenic line exposed to a combination of dietary (electrolyte-imbalanced diet, DEB 700 mEq Kg-1) and environmental (hypoxia, 4.5 mg O2 L-1) challenges and their respective controls (electrolyte-balanced diet, DEB 200 mEq Kg-1 and normoxia, 7.9 or mg O2 L-1) for 49 days. At the end of this period, fish were sampled or subjected to an acute stressor (2 min of handling/confinement) and then sampled. Feeding trout an electrolyte-imbalanced diet produced a reduction in blood pH, as well as increases in cortisol levels, hepato-somatic index (HSI) and total energy content in the liver. The ratio between the lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) activities decreased in the liver of trout fed the DEB 700 diet, but increased in the heart, suggesting a different modulation of metabolic capacity by the dietary challenge. Several markers of oxidative stress in the liver of trout, mainly related to the glutathione antioxidant system, were altered when fed the electrolyte-imbalanced diet. The dietary challenge was also associated with a decrease in the alternative complement pathway activity (ACH50) in plasma, suggesting an impaired innate immune status in that group. Trout subjected to the acute stressor displayed reduced blood pH values, higher plasma cortisol levels as well as increased levels of metabolic markers associated with oxidative stress in the liver. An interaction between diet and acute stressor was detected for oxidative stress markers in the liver of trout, showing that the chronic electrolyte-imbalance impairs the response of rainbow trout to handling/confinement. However, trout reared under chronic hypoxia only displayed changes in parameters related to energy use in both liver and heart. Taken together, these results suggest that trout displays an adaptative response to chronic hypoxia. Conversely, the dietary challenge profoundly affected fish homeostasis, resulting in an impaired physiological response leading to stress, which then placed constraints on a subsequent acute challenge.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30660681

RESUMO

This study investigates muscle growth mechanisms in juvenile rainbow trout in response to isoenergetic changes in dietary non-protein energy (NPE) source (F, fat vs. C, carbohydrates) at two levels of digestible protein to digestible energy (DP/DE) ratio. Fish (initial weight 32.4 g) were fed four diets having similar DE levels (~18 kJ g-1) with a high (HP/E~26 mg kJ-1) vs. low (LP/E~14 mg kJ-1) DP/DE ratio using F or C as major NPE source (7 week-experiment). The lowering of dietary DP/DE ratio increased myoblast determination protein 1a (myod1a) and decreased myostatin 1b (mstn1b) and cathepsin D (ctsd) muscle mRNA levels. The isoenergetic change in dietary NPE from F to C decreased myod1a and proliferative cell nuclear antigen (pcna) muscle mRNA levels. An interaction between DP/DE ratio and NPE source was observed in muscle transcript levels of myogenic factor 6 (mrf4/myf6), fast myosin heavy chain (fmhc) and fast myosin light chain 2 (fmlc2). White muscle total cross-sectional area decreased at low dietary DP/DE ratio and also when NPE source changed from F to C, linked i) to a decreased total number of white muscle fibres, indicating that low dietary DP/DE restricted muscle hyperplasia and that dietary carbohydrate were less efficiently used than fat to sustain muscle hyperplasia, and ii) to decreased percentage of large muscle fibres, indicating limited fibre hypertrophy. Not only the DP level or the DP/DE ratio, but also the isoenergetic change in dietary NPE source (fat vs carbohydrates) thus appears as a potent regulator of muscle hyperplasia and hypertrophy.


Assuntos
Proteínas Alimentares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Oncorhynchus mykiss/crescimento & desenvolvimento , Ração Animal/análise , Animais , Proliferação de Células/genética , Desenvolvimento Muscular/genética , Oncorhynchus mykiss/genética , Proteólise , Transcrição Gênica
6.
Sci Rep ; 8(1): 4965, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563578

RESUMO

Oxygen limitation and dietary imbalances are key aspects influencing feed intake (FI) and growth performance in cultured fish. This study investigated the combined effects of hypoxia and dietary electrolyte balance on the growth performance, body composition and nutrient utilization in a rainbow trout (Oncorhynchus mykiss) isogenic line. Fish were fed ad libitum two experimental diets: electrolyte-balanced or -imbalanced diets (DEB 200 or 700 mEq kg-1, respectively) and exposed to normoxia or hypoxia (7.9 or 4.5 mg O2 l-1, respectively) for 42 days. DEB did not affect FI, growth performance or body composition. Nevertheless, hypoxia had a negative impact, reducing FI (6%), growth rate (8%), oxygen consumption (19%), energy (5%) and lipid (42%) contents. Digestible energy intake and heat production were higher in normoxic fish (40% and 23%, respectively), retaining 64% more energy in lipid or protein. Hypoxia reduced the apparent digestibility of dry matter, ash, protein, lipid, carbohydrates and energy. Trout fed DEB 700 diet were energetically less efficient, reflected in higher heat production and energy requirements for maintenance. FI was inhibited by low dissolved oxygen levels, but not by electrolyte-imbalanced diet, in spite of the higher energy requirements for maintenance. This study highlights the importance that dietary-electrolyte content and DO levels have on energy balance and growth performance when fish are fed to satiation.


Assuntos
Ração Animal , Aquicultura , Ingestão de Alimentos/fisiologia , Hipóxia/fisiopatologia , Oncorhynchus mykiss/fisiologia , Animais , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Hipóxia/etiologia , Necessidades Nutricionais/fisiologia , Oncorhynchus mykiss/metabolismo , Consumo de Oxigênio/fisiologia , Termogênese/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Desequilíbrio Hidroeletrolítico/etiologia , Desequilíbrio Hidroeletrolítico/fisiopatologia
7.
Br J Nutr ; 119(7): 782-791, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29569541

RESUMO

Currently, energy evaluation of fish feeds is performed on a digestible energy basis. In contrast to net energy (NE) evaluation systems, digestible energy evaluation systems do not differentiate between the different types of digested nutrients regarding their potential for growth. The aim was to develop an NE evaluation for fish by estimating the energy efficiency of digestible nutrients (protein, fat and carbohydrates) and to assess whether these efficiencies differed between Nile tilapia and rainbow trout. Two data sets were constructed. The tilapia and rainbow data set contained, respectively, eight and nine experiments in which the digestibility of protein, fat and energy and the complete energy balances for twenty-three and forty-five diets was measured. The digestible protein (dCP), digestible fat (dFat) and digestible carbohydrate intakes (dCarb) were calculated. By multiple regression analysis, retained energy (RE) was related to dCP, dFat and dCarb. In tilapia, all digestible nutrients were linearly related to RE (P<0·001). In trout, RE was quadratically related to dCarb (P<0·01) and linearly to dCP and dFat (P<0·001). The NE formula was NE=11·5×dCP+35·8×dFAT+11·3×dCarb for tilapia and NE=13·5×dCP+33·0×dFAT+34·0×dCarb-3·64×(dCarb)2 for trout (NE in kJ/(kg0·8×d); dCP, dFat and dCarb in g/(kg0·8×d)). In tilapia, the energetic efficiency of dCP, dFat and dCarb was 49, 91 and 66 %, respectively, showing large similarity with pigs. Tilapia and trout had similar energy efficiencies of dCP (49 v. 57 %) and dFat (91 v. 84 %), but differed regarding dCarb.


Assuntos
Ração Animal/análise , Ciclídeos/crescimento & desenvolvimento , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Oncorhynchus mykiss/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aquicultura , Dieta/veterinária , Feminino , Masculino
8.
J Agric Food Chem ; 65(36): 7989-8002, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28701042

RESUMO

Photosynthetic unicellular organisms are considered as promising alternative protein sources. The aim of this study is to understand the extent to which these green sources differ with respect to their gross composition and how these differences affect the final protein isolate. Using mild isolation techniques, proteins were extracted and isolated from four different unicellular sources (Arthrospira (spirulina) maxima, Nannochloropsis gaditana, Tetraselmis impellucida, and Scenedesmus dimorphus). Despite differences in protein contents of the sources (27-62% w/w) and in protein extractability (17-74% w/w), final protein isolates were obtained that had similar protein contents (62-77% w/w) and protein yields (3-9% w/w). Protein solubility as a function of pH was different between the sources and in ionic strength dependency, especially at pH < 4.0. Overall, the characterization and extraction protocol used allows a relatively fast and well-described isolation of purified proteins from novel protein sources.


Assuntos
Clorófitas/química , Proteínas/química , Scenedesmus/química , Spirulina/química , Estramenópilas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Proteínas/isolamento & purificação , Solubilidade
9.
Biol Open ; 6(6): 897-908, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28495962

RESUMO

Intensive aquaculture practices involve rearing fish at high densities. In these conditions, fish may be exposed to suboptimal dissolved O2 levels with an increased formation of reactive O2 species (ROS) in tissues. Seaweeds (SW) contain biologically active substances with efficient antioxidant capacities. This study evaluated the effects of dietary supplementation of heat-treated SW (5% Gracilaria vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea bream subjected to a hypoxic challenge. 168 fish (104.5 g average weight) were distributed in 24 tanks, in which eight tanks were fed one of three experimental diets for 34 days: (i) a control diet without SW supplementation, (ii) a control diet supplemented with Ulva, or (iii) a control diet with Gracilaria Thereafter, fish from 12 tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia (1.3 mg O2 l-1) and subsequent recovery normoxia (8.6 mg O2 l-1). Hypoxic fish showed an increase in hematocrit values regardless of dietary treatment. Dietary modulation of the O2-carrying capacity was conspicuous during recovery, as fish fed SW supplemented diets displayed significantly higher haemoglobin concentration than fish fed the control diet. After the challenge, survival rates in both groups of fish fed SW were higher, which was consistent with a decrease in hepatic lipid peroxidation in these groups. Furthermore, the hepatic antioxidant enzyme activities were modulated differently by changes in environmental O2 condition, particularly in sea bream fed the Gracilaria diet. After being subjected to hypoxia, the gene expression of antioxidant enzymes and molecular chaperones in liver and heart were down regulated in sea bream fed SW diets. This study suggests that the antioxidant properties of heat-treated SW may have a protective role against oxidative stress. The nature of these compounds and possible mechanisms implied are currently being investigated.

10.
Artigo em Inglês | MEDLINE | ID: mdl-28323073

RESUMO

Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na2CO3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na+ and K+ concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance.


Assuntos
Amilases/metabolismo , Dieta , Eletrólitos/administração & dosagem , Metabolismo Energético/fisiologia , Perciformes/crescimento & desenvolvimento , Perciformes/metabolismo , Equilíbrio Hidroeletrolítico , Ração Animal , Animais , Mucosa Gástrica/metabolismo
11.
J Nutr Sci ; 5: e26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547389

RESUMO

The primary aim of this experiment was to evaluate the intestinal barrier permeability in vivo in rainbow trout (Oncorhynchus mykiss) fed increasing levels of soyabean meal (SBM). The relationship between SBM-induced enteritis (SBMIE) and the permeability markers was also investigated. Our results showed that the mean score of morphological parameters was significantly higher as a result of 37·5 % SBM inclusion in the diet, while the scores of fish fed 25 % SBM or lower were not different from those of the fish meal-fed controls (P < 0·05). SBMIE was found in the distal intestine (DI) in 18 % of the fish (eleven of sixty): ten in the 37·5 % SBM-fed group and one in the 25 % SBM-fed group. Sugar markers in plasma showed large variation among individuals probably due to variation in feed intake. We found, however, a significant linear increase in the level of plasma d-lactate with increasing SBM inclusion level (P < 0·0001). Plasma concentration of endotoxin was not significantly different in groups with or without SBMIE. Some individual fish showed high values of endotoxin in blood, but the same individuals did not show any bacterial translocation. Plasma bacterial DNA was detected in 28 % of the fish with SBMIE, and 8 % of non-SBMIE fish (P = 0·07). Plasma concentration of d-lactate was significantly higher in fish with SBMIE (P < 0·0001). To conclude, SBMIE in the DI of rainbow trout was associated with an increase in bacterial translocation and plasma d-lactate concentration, suggesting that these permeability markers can be used to evaluate intestinal permeability in vivo.

12.
PLoS One ; 11(2): e0149378, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895186

RESUMO

Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20 g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Minerais/metabolismo , Oncorhynchus mykiss/fisiologia , Animais , Expressão Gênica , Ferro/metabolismo , Fígado/metabolismo , Fatores de Alongamento de Peptídeos/genética , Transcrição Gênica
13.
PLoS One ; 8(8): e72757, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991148

RESUMO

Compromisation of food intake when confronted with diets deficient in essential amino acids is a common response of fish and other animals, but the underlying physiological factors are poorly understood. We hypothesize that oxygen consumption of fish is a possible physiological factor constraining food intake. To verify, we assessed the food intake and oxygen consumption of rainbow trout fed to satiation with diets which differed in essential amino acid (methionine and lysine) compositions: a balanced vs. an imbalanced amino acid diet. Both diets were tested at two water oxygen levels: hypoxia vs. normoxia. Trout consumed 29% less food under hypoxia compared to normoxia (p<0.001). Under both hypoxia and normoxia trout significantly reduced food intake by 11% and 16% respectively when fed the imbalanced compared to the balanced amino acid diet. Oxygen consumption of the trout per unit body mass remained identical for both diet groups not only under hypoxia but also under normoxia (p>0.05). This difference in food intake between diets under normoxia together with the identical oxygen consumption supports the hypothesis that food intake in fish can be constrained by a set-point value of oxygen consumption, as seen here on a six-week time scale.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Ração Animal/análise , Ingestão de Energia , Oncorhynchus mykiss/fisiologia , Consumo de Oxigênio , Aminoácidos Essenciais/análise , Animais , Composição Corporal
14.
J Nutr ; 143(6): 781-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616505

RESUMO

This study investigated the hypothesis that the voluntary feed intake in fish is regulated by diet-induced differences in oxygen use. Four diets were prepared with a similar digestible protein:digestible energy ratio (18 mg/kJ), but which differed in the composition of nonprotein energy source. This replacement of fat (F) by starch (S) was intended to create a diet-induced difference in oxygen use (per unit of feed): diets F30-S70, F50-S50, F65-S35, and F80-S20 with digestible fat providing 28, 49, 65, and 81% of the nonprotein digestible energy (NPDE), respectively. Each diet was fed to satiation to triplicate groups of 20 rainbow trout for 6 wk. As expected, diet-induced oxygen use decreased linearly (R(2) = 0.89; P < 0.001) with increasing NPDE as fat. The digestible and metabolizable energy intakes of trout slightly increased with increasing NPDE as fat (i.e., decreasing starch content) (R(2) = 0.30, P = 0.08; and R(2) = 0.34, P = 0.05, respectively). Oxygen consumption of trout fed to satiation declined with increasing dietary NPDE as fat (R(2) = 0.48; P = 0.01). The inverse relation between digestible energy intake of trout and the diet-induced oxygen use (R(2) = 0.33; P = 0.05) suggests a possible role of diet-induced oxygen use in feed intake regulation as shown by the replacement of dietary fat by starch.


Assuntos
Dieta/veterinária , Ingestão de Alimentos/fisiologia , Oncorhynchus mykiss/fisiologia , Consumo de Oxigênio/fisiologia , Animais , Composição Corporal , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Ingestão de Energia , Metabolismo Energético , Nitrogênio/administração & dosagem , Amido/administração & dosagem , Amido/metabolismo
15.
PLoS One ; 8(1): e55245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372842

RESUMO

The effect of an isoenergetic replacement of dietary fat by starch, on chyme characteristics and water fluxes in the gastro intestinal tract (GIT) was assessed. Adult African catfish (Clarias gariepinus) were fed a starch (SD) or fat (FD) diet and groups of fish were dissected at 2, 5 and 8 h after the consumption of a single meal. Chyme was collected quantitatively and was analysed for osmolality and dry matter (DM) content. Postprandial water fluxes were calculated, while using yttrium oxide (Y(2)O(3)) as an inert marker to account for the absorption of DM along the GIT. The largest differences in chyme characteristics between diets were observed in the stomach and decreased towards subsequent compartments. A high initial osmotic pressure was measured in the stomach for both diets (up to 498 ± 2 mOsm kg(-1)) and was likely the driver for the endogeneous water influx to this compartment. Large additions of water were recorded to the stomach and proximal intestine for both diets and absorption of water took place in the mid- and distal intestine. Interestingly, the dietary treatment had an impact on water balance in the stomach and proximal intestine of the fish, but not in the mid- and distal intestine. A strong complementary relationship suggested that 59% of the water fluxes in the proximal intestine could be explained by previous additions to the stomach. Therefore, a higher dietary inclusion of starch led to a shift in water additions from the proximal intestine to the stomach. However, the sum of water additions to the GIT was not different between diets and was on average 6.52 ± 0.85 ml water g(-1) DM. The interactions between osmoregulation and digestion, in the GIT of fed freshwater fish, deserve further attention in future research.


Assuntos
Peixes-Gato/fisiologia , Dieta , Trato Gastrointestinal/fisiologia , Amido , Água/metabolismo , Animais , Gorduras na Dieta , Feminino , Conteúdo Gastrointestinal/química , Masculino , Concentração Osmolar
16.
Br J Nutr ; 109(5): 816-26, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23168215

RESUMO

Metabolic mechanisms underlying the divergent response of rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus) to changes in dietary macronutrient composition were assessed. Fish were fed one of four isoenergetic diets having a digestible protein-to-digestible energy (DP:DE) ratio above or below the optimal DP:DE ratio for both species. At each DP:DE ratio, fat was substituted by an isoenergetic amount of digestible starch as the non-protein energy source (NPE). Dietary DP:DE ratio did not affect growth and only slightly lowered protein gains in tilapia. In rainbow trout fed diets with low DP:DE ratios, particularly with starch as the major NPE source, growth and protein utilisation were highly reduced, underlining the importance of NPE source in this species. We also observed species-specific responses of enzymes involved in amino acid catabolism, lipogenesis and gluconeogenesis to dietary factors. Amino acid transdeamination enzyme activities were reduced by a low dietary DP:DE ratio in both species and in tilapia also by the substitution of fat by starch as the NPE source. Such decreased amino acid catabolism at high starch intakes, however, did not lead to improved protein retention. Our data further suggest that a combination of increased lipogenic and decreased gluconeogenic enzyme activities accounts for the better use of carbohydrates and to the improved glycaemia control in tilapia compared with rainbow tront fed starch-enriched diets with low DP:DE ratio.


Assuntos
Ciclídeos/metabolismo , Dieta/veterinária , Oncorhynchus mykiss/metabolismo , Aminoácidos/metabolismo , Animais , Glicemia/metabolismo , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Digestão , Ingestão de Energia/fisiologia , Gluconeogênese , Lipogênese , Fígado/enzimologia , Fígado/metabolismo , Especificidade da Espécie , Amido/administração & dosagem , Amido/metabolismo
17.
PLoS One ; 8(12): e83162, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386155

RESUMO

Sustainable aquaculture, which entails proportional replacement of fish-based feed sources by plant-based ingredients, is impeded by the poor growth response frequently seen in fish fed high levels of plant ingredients. This study explores the potential to improve, by means of early nutritional exposure, the growth of fish fed plant-based feed. Rainbow trout swim-up fry were fed for 3 weeks either a plant-based diet (diet V, V-fish) or a diet containing fishmeal and fish oil as protein and fat source (diet M, M-fish). After this 3-wk nutritional history period, all V- or M-fish received diet M for a 7-month intermediate growth phase. Both groups were then challenged by feeding diet V for 25 days during which voluntary feed intake, growth, and nutrient utilisation were monitored (V-challenge). Three isogenic rainbow trout lines were used for evaluating possible family effects. The results of the V-challenge showed a 42% higher growth rate (P = 0.002) and 30% higher feed intake (P = 0.005) in fish of nutritional history V compared to M (averaged over the three families). Besides the effects on feed intake, V-fish utilized diet V more efficiently than M-fish, as reflected by the on average 18% higher feed efficiency (P = 0.003). We noted a significant family effect for the above parameters (P<0.001), but the nutritional history effect was consistent for all three families (no interaction effect, P>0.05). In summary, our study shows that an early short-term exposure of rainbow trout fry to a plant-based diet improves acceptance and utilization of the same diet when given at later life stages. This positive response is encouraging as a potential strategy to improve the use of plant-based feed in fish, of interest in the field of fish farming and animal nutrition in general. Future work needs to determine the persistency of this positive early feeding effect and the underlying mechanisms.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Aquicultura/métodos , Oncorhynchus mykiss/fisiologia , Ração Animal , Animais , Dieta , Oncorhynchus mykiss/crescimento & desenvolvimento , Fatores de Tempo
18.
PLoS One ; 7(4): e34743, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496852

RESUMO

The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have different digestible energy intakes (DEI) but similar total heat production. Four iso-energetic diets (2 × 2 factorial design) were formulated having a contrast in i) the ratio of protein to energy (P/E): high (H(P/E)) vs. low (L(P/E)) and ii) the type of non-protein energy (NPE) source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank) of rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions. Feed intake (FI), DEI (kJ kg(-0.8) d(-1)) and growth (g kg(-0.8) d(-1)) of trout were affected by the interaction between P/E ratio and NPE source of the diet (P<0.05). Regardless of dietary P/E ratio, the inclusion of carbohydrate compared to fat as main NPE source reduced DEI and growth of trout by ~20%. The diet-induced differences in FI and DEI show that trout did not compensate for the dietary differences in digestible energy or digestible protein contents. Further, changes in body fat store and plasma glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the diet composition, heat production of trout did not differ (P>0.05). Our data suggest that the control of DEI in trout might be a function of heat production, which in turn might reflect a physiological limit related with oxidative metabolism.


Assuntos
Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Oncorhynchus mykiss/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Glicemia/metabolismo , Glicemia/fisiologia , Alimentos , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Termogênese/fisiologia
19.
Physiol Behav ; 106(4): 499-505, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22484564

RESUMO

This study examines how dietary macronutrient-induced changes in voluntary food intake (FI) relate to changes in markers of hepatic oxidative metabolism and in the expression of FI regulatory neuropeptides in a teleost model, the rainbow trout. Rainbow trout were fed for 6weeks with one of four iso-energetic diets (2×2 factorial design), containing either a high (HP, ~500 g·kg(-1) DM) or a low (LP, ~250 g·kg(-1) DM) protein level (PL) with, at each PL, fat (diets HP-F and LP-F) being substituted by an iso-energetic amount of gelatinized corn starch (diets HP-St and LP-St) as non-protein energy source (ES). Irrespective of the dietary PL, FI (g·kg(-0.8)·d(-1)) and digestible energy intake (DEI, kJ·kg(-0.8)·d(-1)) were significantly (P<0.05) reduced by the iso-energetic replacement of fat by starch as non-protein ES. Interestingly, trout fed these St-diets had higher gene expression of markers of hepatic oxidative phosphorylation (OxPhos), i.e., ubiquinol-cytochrome c reductase subunit 2 (UCR2) and cytochrome oxidase subunit 4 (COX4) and of aerobic oxidative capacity (CS, citrate synthase), which paralleled glucokinase (GK) transcription. This positive relation suggests that glucose phosphorylation and markers of mitochondrial OxPhos are linked at the hepatic level and possibly triggered the observed reduction in FI. Moreover, trout displaying the reduced FI had higher cocaine amphetamine regulator transcript (CART) mRNA in hypothalamus, whereas neuropeptide Y (NPY) mRNA did not follow the macronutrient-induced changes in FI. Further studies are needed to unravel the mechanisms by which diet-induced changes in hepatic metabolism inform central feeding centers involved in the regulation of FI in fish.


Assuntos
Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Fígado/metabolismo , Neuropeptídeos/fisiologia , Oncorhynchus mykiss/fisiologia , Animais , Composição Corporal/fisiologia , Dieta , Gorduras na Dieta/farmacologia , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Expressão Gênica/efeitos dos fármacos , Crescimento/fisiologia , Homeostase/fisiologia , Fígado/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Reação em Cadeia da Polimerase , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Amido/farmacologia
20.
Br J Nutr ; 107(11): 1714-25, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22018667

RESUMO

We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5% (low fat, LF) or 15% (high fat, HF). Fat level or FS did not modify food intake (g/kg(0·8) per d), despite higher intestinal cholecystokinin-T mRNA in trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57% of intake), suggests the relatively low oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of medium-chain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in rainbow trout.


Assuntos
Ingestão de Alimentos , Ácidos Láuricos/administração & dosagem , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Oncorhynchus mykiss/metabolismo , Óleos de Plantas/administração & dosagem , Adiposidade , Animais , Aquicultura , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colecistocinina/genética , Colecistocinina/metabolismo , Óleo de Coco , Dieta com Restrição de Gorduras/veterinária , Dieta Hiperlipídica/veterinária , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Láuricos/efeitos adversos , Ácidos Láuricos/análise , Ácidos Láuricos/metabolismo , Fígado/enzimologia , Músculo Esquelético/enzimologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Fosforilação Oxidativa , Óleos de Plantas/efeitos adversos , Óleos de Plantas/química , Óleos de Plantas/metabolismo , RNA Mensageiro/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...