Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(694): eabn9674, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134154

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation. Moreover, we identified the histone deacetylase sirtuin 6 (SIRT6) as a critical regulator of a constitutively active ISR. Using expression analysis, polysome sequencing, immunofluorescence, and cycloheximide chase experiments, we found that SIRT6 regulated protein stability by binding activating transcription factor 4 (ATF4) in nuclear speckles and protecting it from proteasomal degradation. In human PDAC cell lines and organoids as well as in murine PDAC genetically engineered mouse models where SIRT6 was deleted or down-regulated, we demonstrated that SIRT6 loss both defined the basal PDAC subtype and led to reduced ATF4 protein stability and a nonfunctional ISR, causing a marked vulnerability to CDK7 and CDK9 inhibitors. Thus, we have uncovered an important mechanism regulating a stress-induced transcriptional program that may be exploited with targeted therapies in particularly aggressive PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sirtuínas , Humanos , Camundongos , Animais , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Sirtuínas/genética , Sirtuínas/uso terapêutico , Neoplasias Pancreáticas
2.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825005

RESUMO

Telomerase provides cancer cells with replicative immortality, and its overexpression serves as a near-universal marker of cancer. Anti-cancer therapeutics targeting telomerase have garnered interest as possible alternatives to chemotherapy and radiotherapy. Oligonucleotide-based therapies that inhibit telomerase through direct or indirect modulation of its subunits, human telomerase reverse transcriptase (hTERT) and human telomerase RNA gene (hTERC), are a unique and diverse subclass of telomerase inhibitors which hold clinical promise. MicroRNAs that play a role in the upregulation or downregulation of hTERT and respective progression or attenuation of cancer development have been effectively targeted to reduce telomerase activity in various cancer types. Tumor suppressor miRNAs, such as miRNA-512-5p, miRNA-138, and miRNA-128, and oncogenic miRNAs, such as miRNA-19b, miRNA-346, and miRNA-21, have displayed preclinical promise as potential hTERT-based therapeutic targets. Antisense oligonucleotides like GRN163L and T-oligos have also been shown to uniquely target the telomerase subunits and have become popular in the design of novel cancer therapies. Finally, studies suggest that G-quadruplex stabilizers, such as Telomestatin, preserve telomeric oligonucleotide architecture, thus inhibiting hTERC binding to the telomere. This review aims to provide an adept understanding of the conceptual foundation and current state of therapeutics utilizing oligonucleotides to target the telomerase subunits, including the advantages and drawbacks of each of these approaches.

3.
Molecules ; 23(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189661

RESUMO

Telomeres and telomerase have become attractive targets for the development of anticancer therapeutics due to their involvement in cancer cell immortality. Currently, several therapeutics have been developed that directly target telomerase and telomeres, such as telomerase inhibitors and G-quadruplex stabilizing ligands. Telomere-specific oligonucleotides that reduce telomerase activity and disrupt telomere architecture are also in development as novel anticancer therapeutics. Specifically, GRN163L and T-oligos have demonstrated promising anticancer activity in multiple cancers types via induction of potent DNA damage responses. Currently, several miRNAs have been implicated in the regulation of telomerase activity and may prove to be valuable targets in the development of novel therapies by reducing expression of telomerase subunits. Targeting miRNAs that are known to increase expression of telomerase subunits may be another strategy to reduce carcinogenesis. This review aims to provide a comprehensive understanding of current oligonucleotide-based anticancer therapies that target telomeres and telomerase. These studies may help design novel therapeutic approaches to overcome the challenges of oligonucleotide therapy in a clinical setting.


Assuntos
Marcação de Genes , Neoplasias/genética , Oligonucleotídeos/genética , Telomerase/genética , Telômero/genética , Animais , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Terapia Genética , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Oligonucleotídeos/química , Oligonucleotídeos/uso terapêutico , Interferência de RNA , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Telômero/metabolismo
4.
Cancers (Basel) ; 10(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973561

RESUMO

Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted therapies effectively target specific biomarkers, which are commonly overexpressed in lung cancers and can cause increased tumorigenicity. Unfortunately, several molecularly-targeted therapies are associated with initial dramatic responses followed by acquired resistance due to spontaneous mutations or activation of signaling pathways. Acquired resistance to molecularly targeted therapies presents a major clinical challenge in the treatment of lung cancer. Therefore, to address this clinical challenge and to improve lung cancer patient prognosis, we need to understand the mechanism of acquired resistance to current therapies and develop additional novel therapies. This review concentrates on various lung cancer biomarkers, including EGFR, ALK, and BRAF, as well as their potential mechanisms of drug resistance.

5.
J Invest Dermatol ; 138(4): 903-910, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203363

RESUMO

T-oligo, a guanine-rich oligonucleotide homologous to the 3'-telomeric overhang of telomeres, elicits potent DNA-damage responses in melanoma cells; however, its mechanism of action is largely unknown. Guanine-rich oligonucleotides can form G-quadruplexes (G4), which are stabilized by the hydrogen bonding of guanine residues. In this study, we confirmed the G4-forming capabilities of T-oligo using nondenaturing PAGE, nuclear magnetic resonance, and immunofluorescence. Using an anti-G-quadruplex antibody, we showed that T-oligo can form G4 in the nuclei of melanoma cells. Furthermore, using DNase I in a nuclease degradation assay, G4-T-oligo was found to be more stable than single-stranded T-oligo. G4-T-oligo had decreased antiproliferative effects compared with single-stranded T-oligo. However, G4-T-oligo has similar cellular uptake as single-stranded T-oligo, as shown by FACS analysis. Inhibition of JNK, which causes DNA damage-induced apoptosis, partially reversed the antiproliferative activity of T-oligo. T-oligo also inhibited mRNA expression of human telomerase reverse transcriptase, a catalytic subunit of telomerase that was reversed by JNK inhibition. Furthermore, two shelterin complex proteins TRF2/POT1 were found to be up-regulated and bound by T-oligo, suggesting that T-oligo may mediate dissociation of these proteins from the telomere overhang. These studies show that T-oligo can form a G-quadruplex and that the antitumor effects of T-oligo may be mediated through POT1/TRF2 and via human telomerase reverse transcriptase inhibition through JNK activation.


Assuntos
Apoptose , DNA de Neoplasias/genética , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Melanoma/metabolismo , Melanoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/biossíntese
6.
Antioxidants (Basel) ; 6(1)2017 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-28218725

RESUMO

Telomerase is expressed in more than 85% of cancer cells. Tumor cells with metastatic potential may have a high telomerase activity, allowing cells to escape from the inhibition of cell proliferation due to shortened telomeres. Human telomerase primarily consists of two main components: hTERT, a catalytic subunit, and hTR, an RNA template whose sequence is complimentary to the telomeric 5'-dTTAGGG-3' repeat. In humans, telomerase activity is typically restricted to renewing tissues, such as germ cells and stem cells, and is generally absent in normal cells. While hTR is constitutively expressed in most tissue types, hTERT expression levels are low enough that telomere length cannot be maintained, which sets a proliferative lifespan on normal cells. However, in the majority of cancers, telomerase maintains stable telomere length, thereby conferring cell immortality. Levels of hTERT mRNA are directly related to telomerase activity, thereby making it a more suitable therapeutic target than hTR. Recent data suggests that stabilization of telomeric G-quadruplexes may act to indirectly inhibit telomerase action by blocking hTR binding. Telomeric DNA has the propensity to spontaneously form intramolecular G-quadruplexes, four-stranded DNA secondary structures that are stabilized by the stacking of guanine residues in a planar arrangement. The functional roles of telomeric G-quadruplexes are not completely understood, but recent evidence suggests that they can stall the replication fork during DNA synthesis and inhibit telomere replication by preventing telomerase and related proteins from binding to the telomere. Long-term treatment with G-quadruplex stabilizers induces a gradual reduction in the length of the G-rich 3' end of the telomere without a reduction of the total telomere length, suggesting that telomerase activity is inhibited. However, inhibition of telomerase, either directly or indirectly, has shown only moderate success in cancer patients. Another promising approach of targeting the telomere is the use of guanine-rich oligonucleotides (GROs) homologous to the 3' telomere overhang sequence (T-oligos). T-oligos, particularly a specific 11-base oligonucleotide (5'-dGTTAGGGTTAG-3') called T11, have been shown to induce DNA damage responses (DDRs) such as senescence, apoptosis, and cell cycle arrest in numerous cancer cell types with minimal or no cytostatic effects in normal, non-transformed cells. As a result, T-oligos and other GROs are being investigated as prospective anticancer therapeutics. Interestingly, the DDRs induced by T-oligos in cancer cells are similar to the effects seen after progressive telomere degradation in normal cells. The loss of telomeres is an important tumor suppressor mechanism that is commonly absent in transformed malignant cells, and hence, T-oligos have garnered significant interest as a novel strategy to combat cancer. However, little is known about their mechanism of action. In this review, we discuss the current understanding of how T-oligos exert their antiproliferative effects in cancer cells and their role in inhibition of telomerase. We also discuss the current understanding of telomerase in cancer and various therapeutic targets related to the telomeres and telomerase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...