Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 876, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603537

RESUMO

The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species Aethionema arabicum is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution. Glucosinolates (GS) are essentially Brassicales-specific metabolites involved in plant defense. Using two Ae. arabicum accessions (TUR and CYP) we identify substantial differences in glucosinolate profiles and quantities between lines, tissues and developmental stages. We find tissue specific side-chain modifications in aliphatic GS: methylthioalkyl in leaves, methylsulfinylalkyl in fruits, and methylsulfonylalkyl in seeds. We also find large differences in absolute glucosinolate content between the two accessions (up to 10-fold in fruits) that suggest a regulatory factor is involved that is not part of the quintessential glucosinolate biosynthetic pathway. Consistent with this hypothesis, we identified a single major multi-trait quantitative trait locus controlling total GS concentration across tissues in a recombinant inbred line population derived from TUR and CYP. With fine-mapping, we narrowed the interval to a 58 kb region containing 15 genes, but lacking any known GS biosynthetic genes. The interval contains homologs of both the sulfate transporter SULTR2;1 and FLOWERING LOCUS C. Both loci have diverse functions controlling plant physiological and developmental processes and thus are potential candidates regulating glucosinolate variation across the life-cycle of Aethionema. Future work will investigate changes in gene expression of the candidates genes, the effects of GS variation on insect herbivores and the trade-offs between defense and reproduction.

2.
Plant J ; 88(2): 159-178, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27436134

RESUMO

Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17-Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders. The inversion is created by Vandal transposon activity, splitting an F-box and relocating a pericentric heterochromatin segment in juxtaposition with euchromatin without affecting the epigenetic landscape. Examination of the RegMap panel and the 1001 Arabidopsis genomes revealed more than 170 inversion accessions in Europe and North America. The SNP patterns revealed historical recombinations from which we infer diverse haplotype patterns, ancient introgression events and phylogenetic relationships. We find a robust association between the inversion and fecundity under drought. We also find linkage disequilibrium between the inverted region and the early flowering Col-FRIGIDA allele. Finally, SNP analysis elucidates the origin of the inversion to South-Eastern Europe approximately 5000 years ago and the FRI-Col allele to North-West Europe, and reveals the spreading of a single haplotype to North America during the 17th to 19th century. The 'American haplotype' was identified from several European localities, potentially due to return migration.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Evolução Molecular , Arabidopsis/classificação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromossomos de Plantas/genética , Haplótipos/genética , Desequilíbrio de Ligação/genética , Filogenia
3.
Plant J ; 86(5): 376-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26952251

RESUMO

Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Domínio MADS/genética , Transcriptoma , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Câmbio/anatomia & histologia , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Anotação de Sequência Molecular , Mutação , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Análise de Sequência de RNA , Madeira/análise , Madeira/genética , Madeira/crescimento & desenvolvimento
4.
Plant J ; 82(1): 174-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704554

RESUMO

Breeding by introgressive hybridization is a pivotal strategy to broaden the genetic basis of crops. Usually, the desired traits are monitored in consecutive crossing generations by marker-assisted selection, but their analyses fail in chromosome regions where crossover recombinants are rare or not viable. Here, we present the Introgression Browser (iBrowser), a bioinformatics tool aimed at visualizing introgressions at nucleotide or SNP (Single Nucleotide Polymorphisms) accuracy. The software selects homozygous SNPs from Variant Call Format (VCF) information and filters out heterozygous SNPs, multi-nucleotide polymorphisms (MNPs) and insertion-deletions (InDels). For data analysis iBrowser makes use of sliding windows, but if needed it can generate any desired fragmentation pattern through General Feature Format (GFF) information. In an example of tomato (Solanum lycopersicum) accessions we visualize SNP patterns and elucidate both position and boundaries of the introgressions. We also show that our tool is capable of identifying alien DNA in a panel of the closely related S. pimpinellifolium by examining phylogenetic relationships of the introgressed segments in tomato. In a third example, we demonstrate the power of the iBrowser in a panel of 597 Arabidopsis accessions, detecting the boundaries of a SNP-free region around a polymorphic 1.17 Mbp inverted segment on the short arm of chromosome 4. The architecture and functionality of iBrowser makes the software appropriate for a broad set of analyses including SNP mining, genome structure analysis, and pedigree analysis. Its functionality, together with the capability to process large data sets and efficient visualization of sequence variation, makes iBrowser a valuable breeding tool.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variação Genética , Hibridização Genética , Fenótipo , Filogenia , Análise de Sequência de DNA , Navegador
5.
Evol Appl ; 6(4): 569-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23789025

RESUMO

Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop-wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar-wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...