Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 334: 122028, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315884

RESUMO

Brominated flame retardants (BFRs) are a class of compounds with many persistent, toxic, and bioaccumulative members. BFRs have been widely detected in breast milk, posing health risks for breastfeeding infants. Ten years after the phaseout of polybrominated diphenyl ethers (PBDEs) in the United States, we analyzed breast milk from 50 U.S. mothers for a suite of BFRs to assess current exposures to BFRs and the impact of changing use patterns on levels of PBDEs and current-use compounds in breast milk. Compounds analyzed included 37 PBDEs, 18 bromophenols, and 11 other BFRs. A total of 25 BFRs were detected, including 9 PBDEs, 8 bromophenols, and 8 other BFRs. PBDEs were found in every sample but at concentrations considerably lower than in previous North American samples, with a median ∑PBDE concentration (sum of 9 detected PBDEs) of 15.0 ng/g lipid (range 1.46-1170 ng/g lipid). Analysis of time trends in PBDE concentrations in North American breast milk indicated a significant decline since 2002, with a halving time for ∑PBDE concentrations of 12.2 years; comparison with previous samples from the northwest U.S region showed a 70% decline in median levels. Bromophenols were detected in 88% of samples with a median ∑12bromophenol concentration (sum of 12 detected bromophenols) of 0.996 ng/g lipid and reaching up to 71.1 ng/g lipid. Other BFRs were infrequently detected but concentrations reached up to 278 ng/g lipid. These results represent the first measurement of bromophenols and other replacement flame retardants in breast milk from U.S. mothers. In addition, these results provide data on current PBDE contamination in human milk, as PBDEs were last measured in U.S. breast milk ten years ago. The presence of phased-out PBDEs, bromophenols, and other current-use flame retardants in breast milk reflects ongoing prenatal exposure and increased risk for adverse impacts on infant development.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Lactente , Feminino , Criança , Humanos , Leite Humano/química , Éteres Difenil Halogenados/análise , Retardadores de Chama/análise , Noroeste dos Estados Unidos , Lipídeos , Monitoramento Ambiental/métodos , Hidrocarbonetos Bromados/análise
2.
J Expo Sci Environ Epidemiol ; 32(5): 682-688, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35437305

RESUMO

BACKGROUND: Quaternary ammonium compounds (QACs), commonly used in cleaning, disinfecting, and personal care products, have recently gained worldwide attention due to the massive use of disinfectants during the COVID-19 pandemic. However, despite extensive use of these chemicals, no studies have focused on the analysis of QACs in human milk, a major route of exposure for infants. OBJECTIVE: Our objectives were to identify and measure QACs in breast milk and evaluate early-life exposure to this group of compounds for nursing infants. METHODS: Eighteen QACs, including 6 benzylalkyldimethyl ammonium compounds (BACs, with alkyl chain lengths of C8-C18), 6 dialkyldimethyl ammonium compounds (DDACs, C8-C18), and 6 alkyltrimethyl ammonium compounds (ATMACs, C8-C18), were measured in breast milk samples collected from U.S. mothers. Daily lactational intake was estimated based on the determined concentrations for 0-12 month old nursing infants. RESULTS: Thirteen of the 18 QACs were detected in breast milk and 7 of them were found in more than half of the samples. The total QAC concentrations (ΣQAC) ranged from 0.33 to 7.4 ng/mL (median 1.5 ng/mL). The most abundant QAC was C14-BAC with a median concentration of 0.45 ng/mL. The highest median ΣQAC estimated daily intake (EDI) was determined for <1-month old infants based on the average (using the median concentration) and high (using the 95th percentile concentration) exposure scenarios (230 and 750 ng/kg body weight/day, respectively). SIGNIFICANCE: Our findings provide the first evidence of the detection of several QACs in breast milk and identify breastfeeding as an exposure pathway to QACs for nursing infants. IMPACT STATEMENT: Our findings provide the first evidence of QAC occurrence in breast milk and identify breastfeeding as one of the exposure pathways to QACs for nursing infants.


Assuntos
Compostos de Amônio , COVID-19 , Desinfetantes , Desinfetantes/análise , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano/química , Pandemias , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/química
3.
Environ Sci Technol ; 55(11): 7510-7520, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982557

RESUMO

This is the first study in the last 15 years to analyze per- and polyfluoroalkyl substances (PFAS) in breast milk collected from mothers (n = 50) in the United States, and our findings indicate that both legacy and current-use PFAS now contaminate breast milk, exposing nursing infants. Breast milk was analyzed for 39 PFAS, including 9 short-chain and 30 long-chain compounds, and 16 of these PFAS were detected in 4-100% of the samples. The ∑PFAS concentration in breast milk ranged from 52.0 to 1850 pg/mL with a median concentration of 121 pg/mL. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were the most abundant PFAS in these samples (medians 30.4 and 13.9 pg/mL, respectively). Two short-chain PFAS, including perfluoro-n-hexanoic acid (PFHxA, C6) and perfluoro-n-heptanoic acid (PFHpA, C7), were detected in most of the samples with median concentrations of 9.69 and 6.10 pg/mL, respectively. Analysis of the available breast milk PFAS data from around the world over the period of 1996-2019 showed that while the levels of the phased-out PFOS and PFOA have been declining with halving times of 8.1 and 17 years, respectively, the detection frequencies of current-use short-chain PFAS have been increasing with a doubling time of 4.1 years.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , Feminino , Fluorocarbonos/análise , Humanos , Leite Humano/química , Estados Unidos
4.
Chemosphere ; 244: 125505, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050329

RESUMO

Melamine (MEL) and its derivatives are widely used in many consumer products, including furniture, kitchenware, and plastics. However, very limited knowledge exists on human exposure to MEL and its derivatives, especially in the indoor environment. Here, we determined the occurrence and distribution of 11 MEL derivatives in childcare facilities and estimated children's exposure through dust ingestion and dermal absorption. We analyzed dust and samples of nap mats, a commonly used item in many childcares, from eight facilities located in the United States. Eight MEL-based compounds were detected in dust, and total MEL concentrations ranged from 429 to 117,000 ng/g. The most abundant compounds found in the dust samples were MEL, cyanuric acid (CYA), ammeline (AMN), and ammelide (AMD), with median concentrations of 1620, 585, 1060, and 299 ng/g, respectively. MEL, CYA, AMN and 2,4,6-tris[bis(methoxymethyl)amino]-1,3,5-triazine (TBMMAT) were also detected in nap mats with median concentrations of 45.6, 19.8, 1510 and 2.5 ng/g, respectively. ΣMEL concentrations in mat covers (median 709 ng/g) were significantly higher than those in mat foam (median 15.1 ng/g). Estimated daily intakes (EDIs) of MEL and its derivatives via dust ingestion were two orders of magnitude higher than the EDIs through dermal absorption, but both were below the established tolerable daily intake levels. This is the first report on exposure to MEL and its derivatives in the childcare environment.


Assuntos
Creches/normas , Exposição Ambiental/análise , Triazinas/farmacologia , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira/análise , Humanos , Absorção Cutânea , Triazinas/análise , Estados Unidos
5.
Environ Pollut ; 258: 113714, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901805

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are widely used in stain-resistant carpets, rugs, and upholstery, as well as in waxes and cleaners, and are potential contaminants in the childcare environment. However, limited knowledge exists on the occurrence of PFAS in indoor environments, apart from residential homes. Here, we determined the occurrence and distribution of 37 neutral and ionic PFAS, including perfluoroalkyl carboxylates (PFCAs) perfluoroalkyl sulfonates (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer sulfonates (FTSs), perfluorooctane sulfonamides and perfluorooctane sulfonamidoethanols (FOSAs/FOSEs), and fluorotelomer acrylates and fluorotelomer methacrylates (FTACs/FTMACs) in the childcare environment and estimated children's exposure through dust ingestion and dermal absorption. We analyzed dust and nap mats, a commonly used item in many childcares, from eight facilities located in the United States. Twenty-eight PFAS were detected in dust with total PFAS concentrations (ΣPFAS) ranging from 8.1 to 3,700 ng/g and were dominated by the two neutral PFAS groups: ΣFTOH (n.d. - 3,100 ng/g) and ΣFOSA/FOSE (n.d. - 380 ng/g). The ionic PFAS were detected at lower concentrations and were dominated by 6:2 FTS and 8:2 FTS (median 12 and 5.8 ng/g, respectively). ΣPFAS concentrations in mats (1.6-600 ng/g) were generally an order of magnitude lower than in dust and were dominated by ΣFOSA/FOSE concentrations (n.d. - 220 ng/g). Daily intake of neutral PFAS in the childcare environment via dust ingestion was estimated at 0.20 ng/kg bw/day and accounted for 75% of the ΣPFAS intake. This higher exposure to neutral PFAS is concerning considering that many neutral PFAS are the precursors of toxic ionic PFAS, such as PFOA.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Exposição Ambiental , Fluorocarbonos/análise , Ácidos Carboxílicos , Criança , Cuidado da Criança , Monitoramento Ambiental , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-28486433

RESUMO

Inhalation of halogenated flame-retardants (HFRs) released from consumer products is an important route of exposure. However, not all airborne HFRs are respirable, and thus interact with vascular membranes within the gas exchange (alveolar) region of the lung. HFRs associated with large (>4 µm), inhalable airborne particulates are trapped on the mucosal lining of the respiratory tract and then are expelled or swallowed. The latter may contribute to internal exposure via desorption from particles in the digestive tract. Exposures may also be underestimated if personal activities that re-suspend particles into the breathing zone are not taken into account. Here, samples were collected using personal air samplers, clipped to the participants' shirt collars (n = 18). We observed that the larger, inhalable air particulates carried the bulk (>92%) of HFRs. HFRs detected included those removed from commerce (i.e., polybrominated diphenyl ethers (Penta-BDEs: BDE-47, -85, -100, -99, and -153)), their replacements; e.g., 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB or EH-TBB); bis(2-ethylhexyl) 3,4,5,6-tetrabromophthalate (TBPH or BEH-TEBP) and long-produced chlorinated organophosphate-FRs (ClOPFRs): tris(2-chloroethyl)phosphate (TCEP), tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP), and tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP). Our findings suggest estimates relying on a single exposure route, i.e., alveolar gas exchange, may not accurately estimate HFR internal dosage, as they ignore contributions from larger inhalable particulates that enter the digestive tract. Consideration of the fate and bioavailability of these larger particulates resulted in higher dosage estimates for HFRs with log Koa < 12 (i.e., Penta-BDEs and ClOPFRs) and lower estimates for those with log Koa > 12 (i.e., TBB and TBPH) compared to the alveolar route exposure alone. Of those HFRs examined, the most significant effect was the lower estimate by 41% for TBPH. The bulk of TBPH uptake from inhaled particles was estimated to be through the digestive tract, with lower bioavailability. We compared inhalation exposure estimates to chronic oral reference doses (RfDs) established by several regulatory agencies. The U.S. Environmental Protection Agency (EPA) RfD levels for several HFRs are considered outdated; however, BDE-99 levels exceeded those suggested by the Dutch National Institute for Public Health and the Environment (RIVM) by up to 26 times. These findings indicate that contributions and bioavailability of respirable and inhalable airborne particulates should both be considered in future risk assessments.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Retardadores de Chama/análise , Exposição por Inalação/análise , Tamanho da Partícula , Benzoatos/análise , Éteres Difenil Halogenados/análise , Humanos , Compostos Organofosforados/análise
7.
Chemosphere ; 150: 499-504, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26775187

RESUMO

Chlorinated organophosphate flame retardants (ClOPFRs) are widely used as additive flame retardants in consumer products including furniture, children's products, building materials, and textiles. Tests of indoor media in homes, offices, and other environments have shown these compounds are released from products and have become ubiquitous indoor pollutants. In house dust samples from Washington State, U.S.A., ClOPFRs were the flame retardants detected in the highest concentrations. Two ClOPFRs, tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP) and tris(2-chloroethyl)phosphate (TCEP), have been designated as carcinogens, and there is growing concern about the toxicity of the homologue tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP). In response to concerns about exposure to these compounds, the European Union and a number of U.S. states have taken regulatory action to restrict their use in certain product categories. To better characterize exposure to ClOPFRs, inhalation exposure was assessed using active personal air samplers in Washington State with both respirable and inhalable particulate fractions collected to assess the likelihood particles penetrate deep into the lungs. Concentrations of ∑ClOPFRs (respirable and inhalable) ranged from 97.1 to 1190 ng m(-3) (mean 426 ng m(-3)), with TCPP detected at the highest concentrations. In general, higher levels were detected in the inhalable particulate fraction. Total intake of ClOPFRs via the inhalation exposure route was estimated to exceed intake via dust ingestion, indicating that inhalation is an important route that should be taken into consideration in assessments of these compounds.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Retardadores de Chama/análise , Exposição por Inalação/análise , Compostos Organofosforados/análise , Adulto , Criança , Monitoramento Ambiental , Halogenação , Humanos , Washington
8.
Environ Sci Technol ; 48(19): 11575-83, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25288150

RESUMO

Levels of flame retardants in house dust and a transport pathway from homes to the outdoor environment were investigated in communities near the Columbia River in Washington state (WA). Residential house dust and laundry wastewater were collected from 20 homes in Vancouver and Longview, WA and analyzed for a suite of flame retardants to test the hypothesis that dust collecting on clothing and transferring to laundry water is a source of flame retardants to wastewater treatment plants (WWTPs) and subsequently to waterways. Influent and effluent from two WWTPs servicing these communities were also analyzed for flame retardants. A total of 21 compounds were detected in house dust, including polybrominated diphenyl ethers (PBDEs), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB or EH-TBB), bis(2-ethylhexyl) 3,4,5,6-tetrabromophthalate (TBPH), 1,2-bis(2,4,6,-tribromophenoxy)ethane (BTBPE) and decabromodiphenylethane (DBDPE), hexabromocyclododecane (HBCD or HBCDD), tetrabromobisphenol A (TBBPA), and three chlorinated organophosphate flame retardants (ClOPFRs), tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP), tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP), and tris(2-chloroethyl)phosphate (TCEP). Levels ranged from 3.6 to 82,700 ng g(-1) (dry weight). Of the 21 compounds detected in dust, 18 were also detected in laundry wastewater. Levels ranged from 47.1 to 561,000 ng L(-1). ClOPFRs were present at the highest concentrations in both dust and laundry wastewater, making up 72% of total flame retardant mass in dust and 92% in laundry wastewater. Comparison of flame retardant levels in WWTP influents to estimates based on laundry wastewater levels indicated that laundry wastewater may be the primary source to these WWTPs. Mass loadings to the Columbia River from each treatment plant were by far the highest for the ClOPFRs and ranged up to 114 kg/yr for TCPP.


Assuntos
Poeira/análise , Ecossistema , Retardadores de Chama/análise , Produtos Domésticos , Águas Residuárias , Poluentes Químicos da Água/análise , Água/química , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Hidrocarbonetos Bromados/análise , Organofosfatos/análise , Compostos Organofosforados/análise , Bifenil Polibromatos/análise , Estados Unidos , Washington , Eliminação de Resíduos Líquidos , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...