Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(24): 10095-10101, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36473700

RESUMO

The Ruddlesden-Popper (An+1BnO3n+1) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase n. The negligible differences in formation energies for different n can produce local structural variations arising from small stoichiometric deviations. Here, we present a Python analysis platform to detect, measure, and quantify the presence of different n-phases based on atomic-resolution scanning transmission electron microscopy (STEM) images. We employ image phase analysis to identify horizontal Ruddlesden-Popper faults within the lattice images and quantify the local structure. Our semiautomated technique considers effects of finite projection thickness, limited fields of view, and lateral sampling rates. This method retains real-space distribution of layer variations allowing for spatial mapping of local n-phases to enable quantification of intergrowth occurrence and qualitative description of their distribution suitable for a wide range of layered materials.

2.
Sci Adv ; 8(5): eabj0481, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119924

RESUMO

Interface quantum materials have yielded a plethora of previously unknown phenomena, including unconventional superconductivity, topological phases, and possible Majorana fermions. Typically, such states are detected at the interface between two insulating constituents by electrical transport, but whether either material is conducting, transport techniques become insensitive to interfacial properties. To overcome these limitations, we use angle-resolved photoemission spectroscopy and molecular beam epitaxy to reveal the electronic structure, charge transfer, doping profile, and carrier effective masses in a layer-by-layer fashion for the interface between the Dirac nodal-line semimetal SrIrO3 and the correlated metallic Weyl ferromagnet SrRuO3. We find that electrons are transferred from the SrIrO3 to SrRuO3, with an estimated screening length of λ = 3.2 ± 0.1 Å. In addition, we find that metallicity is preserved even down to a single SrIrO3 layer, where the dimensionality-driven metal-insulator transition typically observed in SrIrO3 is avoided because of strong hybridization of the Ir and Ru t2g states.

3.
Proc Natl Acad Sci U S A ; 117(20): 10654-10659, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366660

RESUMO

We have measured the angle-resolved transverse resistivity (ARTR), a sensitive indicator of electronic anisotropy, in high-quality thin films of the unconventional superconductor Sr2RuO4 grown on various substrates. The ARTR signal, heralding the electronic nematicity or a large nematic susceptibility, is present and substantial already at room temperature and grows by an order of magnitude upon cooling down to 4 K. In Sr2RuO4 films deposited on tetragonal substrates the highest-conductivity direction does not coincide with any crystallographic axis. In films deposited on orthorhombic substrates it tends to align with the shorter axis; however, the magnitude of the anisotropy stays the same despite the large lattice distortion. These are strong indications of actual or incipient electronic nematicity in Sr2RuO4.

4.
Ultramicroscopy ; 191: 56-65, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29843097

RESUMO

Combining multiple fast image acquisitions to mitigate scan noise and drift artifacts has proven essential for picometer precision, quantitative analysis of atomic resolution scanning transmission electron microscopy (STEM) data. For very low signal-to-noise ratio (SNR) image stacks - frequently required for undistorted imaging at liquid nitrogen temperatures - image registration is particularly delicate, and standard approaches may either fail, or produce subtly specious reconstructed lattice images. We present an approach which effectively registers and averages image stacks which are challenging due to their low-SNR and propensity for unit cell misalignments. Registering all possible image pairs in a multi-image stack leads to significant information surplus. In combination with a simple physical picture of stage drift, this enables identification of incorrect image registrations, and determination of the optimal image shifts from the complete set of relative shifts. We demonstrate the effectiveness of our approach on experimental, cryogenic STEM datasets, highlighting subtle artifacts endemic to low-SNR lattice images and how they can be avoided. High-SNR average images with information transfer out to 0.72 Å are achieved at 300 kV and with the sample cooled to near liquid nitrogen temperature.

5.
Chem Commun (Camb) ; 51(61): 12201-4, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26136224

RESUMO

Sr2FeMoO6 has been extensively studied for application in spintronic devices. Through the topochemical de-intercalation of oxygen anions with metal hydride reduction, we demonstrate that the high temperature cubic phase is stabilized, at room temperature, whilst leaving the magnetic ordering intact. Synchrotron X-ray and neutron powder diffraction were used to characterize the structure and stoichiometry of the reduced oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...