Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 272, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900158

RESUMO

We addressed the heteromerization of the epidermal growth factor receptor (EGFR) with G-protein coupled receptors (GPCR) on the basis of angiotensin-II-receptor-subtype-1(AT1R)-EGFR interaction as proof-of-concept and show its functional relevance during synergistic nuclear information transfer, beyond ligand-dependent EGFR transactivation. Following in silico modelling, we generated EGFR-interaction deficient AT1R-mutants and compared them to AT1R-wildtype. Receptor interaction was assessed by co-immunoprecipitation (CoIP), Förster resonance energy transfer (FRET) and fluorescence-lifetime imaging microscopy (FLIM). Changes in cell morphology, ERK1/2-phosphorylation (ppERK1/2), serum response factor (SRF)-activation and cFOS protein expression were determined by digital high content microscopy at the single cell level. FRET, FLIM and CoIP confirmed the physical interaction of AT1R-wildtype with EGFR that was strongly reduced for the AT1R-mutants. Responsiveness of cells transfected with AT1R-WT or -mutants to angiotensin II or EGF was similar regarding changes in cell circularity, ppERK1/2 (direct and by ligand-dependent EGFR-transactivation), cFOS-expression and SRF-activity. By contrast, the EGFR-AT1R-synergism regarding these parameters was completely absent for in the interaction-deficient AT1R mutants. The results show that AT1R-EGFR heteromerisation enables AT1R-EGFR-synergism on downstream gene expression regulation, modulating the intensity and the temporal pattern of nuclear AT1R/EGFR-information transfer. Furthermore, remote EGFR transactivation, via ligand release or cytosolic tyrosine kinases, is not sufficient for the complete synergistic control of gene expression.


Assuntos
Núcleo Celular , Receptores ErbB , Receptor Tipo 1 de Angiotensina , Receptores ErbB/metabolismo , Humanos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Núcleo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Membrana Celular/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Células HEK293 , Ligação Proteica , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética
2.
J Mol Cell Biol ; 16(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253401

RESUMO

Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.


Assuntos
Processamento Alternativo , Adesões Focais , Miócitos Cardíacos , Paxilina , Fatores de Processamento de RNA , Processamento Alternativo/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Adesões Focais/metabolismo , Adesões Focais/genética , Animais , Paxilina/metabolismo , Paxilina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Camundongos , Vinculina/metabolismo , Vinculina/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
3.
Biochem Pharmacol ; 219: 115916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979705

RESUMO

The thromboxane A2 receptor (TP) has been shown to play a role in angiotensin II (Ang II)-mediated hypertension and pathological vascular remodeling. To assess the impact of vascular TP on Ang II-induced hypertension, atherogenesis, and pathological aortic alterations, i.e. aneurysms, we analysed Western-type diet-fed and Ang II-infused TPVSMC KO/Ldlr KO, TPEC KO/Ldlr KO mice and their respective wild-type littermates (TPWT/Ldlr KO). These analyses showed that neither EC- nor VSMC-specific deletion of the TP significantly affected basal or Ang II-induced blood pressure or aortic atherosclerotic lesion area. In contrast, VSMC-specific TP deletion abolished and EC-specific TP deletion surprisingly reduced the ex vivo reactivity of aortic rings to the TP agonist U-46619, whereas VSMC-specific TP knockout also diminished the ex vivo response of aortic rings to Ang II. Furthermore, despite similar systemic blood pressure, there was a trend towards less atherogenesis in the aortic arch and a trend towards fewer pathological aortic alterations in Ang II-treated female TPVSMC KO/Ldlr KO mice. Survival was impaired in male mice after Ang II infusion and tended to be higher in TPVSMC KO/Ldlr KO mice than in TPWT/Ldlr KO littermates. Thus, our data may suggest a deleterious role of the TP expressed in VSMC in the pathogenesis of Ang II-induced aortic atherosclerosis in female mice, and a surprising role of the endothelial TP in TP-mediated aortic contraction. However, future studies are needed to substantiate and further elucidate the role of the vascular TP in the pathogenesis of Ang II-induced hypertension, aortic atherosclerosis and aneurysm formation.


Assuntos
Aterosclerose , Hipertensão , Receptores de Tromboxanos , Animais , Feminino , Masculino , Camundongos , Angiotensina II/toxicidade , Aorta , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/patologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Tromboxanos/genética
4.
Sci Rep ; 13(1): 22827, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129563

RESUMO

Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction.


Assuntos
Vasos Coronários , Células Endoteliais , Humanos , Feminino , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Aorta , Receptores ErbB/metabolismo , Inflamação/metabolismo , Endotélio Vascular/metabolismo
5.
iScience ; 26(11): 108286, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026216

RESUMO

Vascular smooth muscle cells (VSMC) are critical for the vascular tone, but they can also drive the development of vascular diseases when they lose their contractile phenotype and de-differentiate. Previous studies showed that the epidermal growth factor receptor (EGFR) of VSMC is critical for vascular health, but most of the underlying mechanisms by which VSMC-EGFR controls vascular fate have remained unknown. We combined RNA-sequencing and bioinformatics analysis to characterize the effect of EGFR-activation on the transcriptome of human primary VSMC (from different female donors) and to identify potentially affected cellular processes. Our results indicate that the activation of human VSMC-EGFR is sufficient to trigger a phenotypical switch toward a proliferative and inflammatory phenotype. The extent of this effect is nonetheless partly donor-dependent. Our hypothesis-generating study thus provides a first insight into mechanisms that could partly explain variable susceptibilities to vascular diseases in between individuals.

6.
Biochem Pharmacol ; 217: 115837, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777161

RESUMO

The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.


Assuntos
Doenças Cardiovasculares , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Receptores ErbB/metabolismo , Inflamação , Receptor Tipo 1 de Angiotensina/metabolismo , Tirosina
7.
Biomedicines ; 11(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37626737

RESUMO

(1) Background: Obesity is associated with hypertension because of endocrine dysregulation of the adrenergic and the renin-angiotensin-aldosterone systems. The epidermal growth factor receptor (EGFR) is an important signaling hub in the cardiovascular system. In this study, we investigate the role of smooth muscle cell (VSMC) and endothelial cell (EC) EGFRs for blood pressure homeostasis and acute vascular reactivity in vivo. (2) Methods: Mice with deletion of the EGFR in the respective cell type received either a high-fat (HFD) or standard-fat diet (SFD) for 18 weeks. Intravascular blood pressure was measured via a Millar catheter in anesthetized animals upon vehicle load, angiotensin II (AII) and phenylephrine (PE) stimulation. (3) Results: We confirmed that deletion of the EGFR in VSMCs leads to reduced blood pressure and a most probably compensatory heart rate increase. EC-EGFR and VSMC-EGFR had only a minor impact on volume-load-induced blood pressure changes in lean as well as in obese wild-type animals. Regarding vasoactive substances, EC-EGFR seems to have no importance for angiotensin II action and counteracting HFD-induced prolonged blood pressure increase upon PE stimulation. VSMC-EGFR supports the blood pressure response to adrenergic and angiotensin II stimulation in lean animals. The responsiveness to AII and alpha-adrenergic stimulation was similar in lean and obese animals despite the known enhanced activity of the RAAS and the sympathetic nervous system under a high-fat diet. (4) Conclusions: We demonstrate that EGFRs in VSMCs and to a lesser extent in ECs modulate short-term vascular reactivity to AII, catecholamines and volume load in lean and obese animals.

8.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741065

RESUMO

In vivo, cells are simultaneously exposed to multiple stimuli whose effects are difficult to distinguish. Therefore, they are often investigated in experimental cell culture conditions where stimuli are applied separately. However, it cannot be presumed that their individual effects simply add up. As a proof-of-principle to address the relevance of transcriptional signaling synergy, we investigated the interplay of the Epidermal Growth Factor Receptor (EGFR) with the Angiotensin-II (AT1R) or the Thromboxane-A2 (TP) receptors in murine primary aortic vascular smooth muscle cells. Transcriptome analysis revealed that EGFR-AT1R or EGFR-TP simultaneous activations led to different patterns of regulated genes compared to individual receptor activations (qualitative synergy). Combined EGFR-TP activation also caused a variation of amplitude regulation for a defined set of genes (quantitative synergy), including vascular injury-relevant ones (Klf15 and Spp1). Moreover, Gene Ontology enrichment suggested that EGFR and TP-induced gene expression changes altered processes critical for vascular integrity, such as cell cycle and senescence. These bioinformatics predictions regarding the functional relevance of signaling synergy were experimentally confirmed. Therefore, by showing that the activation of more than one receptor can trigger a synergistic regulation of gene expression, our results epitomize the necessity to perform comprehensive network investigations, as the study of individual receptors may not be sufficient to understand their physiological or pathological impact.


Assuntos
Receptores ErbB/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Receptor Tipo 1 de Angiotensina/metabolismo , Tromboxano A2/metabolismo , Angiotensina II/metabolismo , Animais , Receptores ErbB/genética , Regulação da Expressão Gênica , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
9.
Free Radic Biol Med ; 185: 36-45, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35470061

RESUMO

The F2-isoprostane 8-iso-PGF2α (also known as 15-F2t-isoprostane, iPF2α-III, 8-epi PGF2α, 15(S)-8-iso-PGF2α, or 8-Isoprostane), a thromboxane A2 receptor (TP) agonist, stable biomarker of oxidative stress, and risk marker of cardiovascular disease, has been proposed to aggravate atherogenesis in genetic mouse models of atherosclerotic vascular disease. Moreover, the TP plays an eminent role in the pathophysiology of endothelial dysfunction, atherogenesis, and cardiovascular disease. Yet it is unknown, how the TP expressed by vascular cells affects atherogenesis or 8-iso-PGF2α-related effects in mouse models of atherosclerosis. We studied Ldlr-deficient vascular endothelial-specific (EC) and vascular smooth muscle cell (VSMC)-specific TP knockout mice (TPECKO/Ldlr KO; TPVSMCKO/Ldlr KO) and corresponding wild-type littermates (TPWT/Ldlr KO). The mice were fed a Western-type diet for eight weeks and received either 8-iso-PGF2α or vehicle infusions via osmotic pumps. Subsequently, arterial blood pressure, atherosclerotic lesion formation, and lipid profiles were analyzed. We found that VSMC-, but not EC-specific TP deletion, attenuated atherogenesis without affecting blood pressure or plasma lipid profiles of the mice. In contrast to a previous report, 8-iso-PGF2α tended to reduce atherogenesis in TPWT/Ldlr KO and TPEC KO/Ldlr KO mice, again without significantly affecting blood pressure or lipid profiles of these mice. However, no further reduction in atherogenesis was observed in 8-iso-PGF2α-treated TPVSMC KO/Ldlr KO mice. Our work suggests that the TP expressed in VSMC but not the TP expressed in EC is involved in atherosclerotic lesion formation in Ldlr-deficient mice. Furthermore, we report an inhibitory effect of 8-iso-PGF2α on atherogenesis in this experimental atherosclerosis model, which paradoxically appears to be related to the presence of the TP in VSMC.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Aterosclerose/genética , Dinoprosta/análogos & derivados , F2-Isoprostanos , Camundongos , Camundongos Knockout , Fator de Crescimento Placentário , Receptores de Tromboxanos/genética , Tromboxano A2 , Tromboxanos
10.
Br J Pharmacol ; 179(13): 3165-3177, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935140

RESUMO

Liver diseases are the fourth common death in Europe responsible for about 2 million death per year worldwide. Among the known detrimental causes for liver dysfunction are virus infections, intoxications and obesity. The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor activated by aldosterone or glucocorticoids but also by pathological milieu factors. Canonical actions of the MR take place in epithelial cells of kidney, colon and sweat glands and contribute to sodium reabsorption, potassium secretion and extracellular volume homeostasis. The non-canonical functions can be initiated by inflammation or an altered micro-milieu leading to fibrosis, hypertrophy and remodelling in various tissues. This narrative review summarizes the evidence regarding the role of MR in portal hypertension, non-alcoholic fatty liver disease, liver fibrosis and cirrhosis, demonstrating that inhibition of the MR in vivo seems to be beneficial for liver function and not just for volume regulation. Unfortunately, the underlying molecular mechanisms are still not completely understood. LINKED ARTICLES: This article is part of a themed issue on Emerging Fields for Therapeutic Targeting of the Aldosterone-Mineralocorticoid Receptor Signaling Pathway. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.13/issuetoc.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores de Mineralocorticoides , Aldosterona , Fibrose , Homeostase , Humanos , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores de Mineralocorticoides/metabolismo
11.
Cell Mol Life Sci ; 79(1): 57, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921637

RESUMO

The tyrosine kinase receptor EGFR and the G-protein-coupled receptor AT1R induce essential cellular responses, in part via receptor crosstalk with an unknown role in nuclear information transfer and transcription regulation. We investigated whether this crosstalk results in linear, EGFR-mediated nuclear signalling or in parallel, synergistic information transfer leading to qualitative and temporal variations, relevant for gene expression and environment interaction. AT1R and EGFR synergistically activate SRF via the ERK1/2-TCF and actin-MRTF pathways. Synergism, comprised of switch-like and graded single cell response, converges on the transcription factors AP1 and EGR, resulting in synergistic transcriptome alterations, in qualitative (over-additive number of genes), quantitative (over-additive expression changes of individual genes) and temporal (more late onset and prolonged expressed genes) terms. Gene ontology and IPA® pathway analysis indicate prolonged cell stress (e.g. hypoxia-like) and dysregulated vascular biology. Synergism occurs during separate but simultaneous activation of both receptors and during AT1R-induced EGFR transactivation. EGFR and AT1R synergistically regulate gene expression in qualitative, quantitative and temporal terms with (patho)physiological relevance, extending the importance of EGFR-AT1R crosstalk beyond cytoplasmic signalling.


Assuntos
Regulação da Expressão Gênica , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Receptor Cross-Talk , Transdução de Sinais , Transcriptoma
12.
Cell Biosci ; 11(1): 160, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404451

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Cardiac electrical remodeling including altered ion channel expression and imbalance of calcium homeostasis can have detrimental effects on cardiac function. While it has been extensively reported that miR-221/222 are involved in structural remodeling, their role in electrical remodeling still has to be evaluated. We previously reported that subunits of the L-type Ca2+ channel (LTCC) are direct targets of miR-221/222. Furthermore, HL-1 cells transfected with miR-221 or -222 mimics showed a reduction in LTCC current density while the voltage-dependence of activation was not altered. The aim of the present study was to determine the influence of miR-221/222 on cardiomyocyte calcium handling and function. RESULTS: Transient transfection of HL-1 cells with miR-221/222 mimics led to slower depolarization-dependent Ca2+ entry and increased proportion of non-responding cells. Angiotensin II-induced Ca2+ release from the SR was not affected by miR-221/222. In miR-222-transfected neonatal cardiomyocytes the isoprenaline-induced positive inotropic effect on the intracellular Ca2+ transient was lost and the positive chronotropic effect on spontaneous beating activity was strongly reduced. This could have severe consequences for cardiomyocytes and could lead to a reduced contractility and systolic dysfunction of the whole heart. CONCLUSIONS: This study adds a new role of miR-221/222 in cardiomyocytes by showing the impact on ß-adrenergic regulation of LTCC function, calcium handling and beating frequency. Together with the previous report that miR-221/222 reduce GIRK1/4 function and LTCC current density, it expands our knowledge about the role of these miRs on cardiac ion channel regulation.

13.
Biomedicines ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201741

RESUMO

MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among them cardiac hypertrophy and atrial fibrillation. Cardiac miR expression was analyzed in a mouse model with structural and electrical remodeling. Next-generation sequencing revealed that miR-208b-3p was ~25-fold upregulated. Therefore, the aim of our study was to evaluate the impact of miR-208b on cardiac protein expression. First, an undirected approach comparing whole RNA sequencing data to miR-walk 2.0 miR-208b 3'-UTR targets revealed 58 potential targets of miR-208b being regulated. We were able to show that miR-208b mimics bind to the 3' untranslated region (UTR) of voltage-gated calcium channel subunit alpha1 C and Kcnj5, two predicted targets of miR-208b. Additionally, we demonstrated that miR-208b mimics reduce GIRK1/4 channel-dependent thallium ion flux in HL-1 cells. In a second undirected approach we performed mass spectrometry to identify the potential targets of miR-208b. We identified 40 potential targets by comparison to miR-walk 2.0 3'-UTR, 5'-UTR and CDS targets. Among those targets, Rock2 and Ran were upregulated in Western blots of HL-1 cells by miR-208b mimics. In summary, miR-208b targets the mRNAs of proteins involved in the generation of cardiac excitation and propagation, as well as of proteins involved in RNA translocation (Ran) and cardiac hypertrophic response (Rock2).

14.
Sci Rep ; 11(1): 13229, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168192

RESUMO

The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important effector of the renin-angiotensin-aldosterone-system and elicits pathophysiological effects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR-mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identified a SNP within the EGFR promoter that modulates MR-induced EGFR expression. In RNA-sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to differential expression of cardiac ion channels, especially of the T-type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone- and EGF-responsiveness of CACNA1H expression was confirmed in HL-1 cells by Western blot and by measuring peak current density of T-type calcium channels. Aldosterone-induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T-type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL-1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an effect on HL-1 cell diameter, and the extent of this regulation seems to depend on the SNP-216 (G/T) genotype. This suggests that the EGFR may be an intermediate for MR-mediated cardiovascular changes and that SNP analysis can help identify subgroups of patients that will benefit most from MR antagonists.


Assuntos
Canais de Cálcio Tipo T/genética , Receptores ErbB/genética , Hipertrofia/genética , Receptores de Mineralocorticoides/genética , Aldosterona/genética , Animais , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Linhagem Celular , Feminino , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Ratos
15.
Sci Rep ; 11(1): 7269, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790318

RESUMO

Vascular EGF receptors (EGFR) influence function and structure of arterial vessels. In genetic mouse models we described the role of vascular smooth muscle (VSMC) EGFR for proper physiological function and structure as well as for pathophysiological alterations by obesity or angiotensin II. As the importance of endothelial (EC) EGFR in vivo is unknown, we analyzed the impact of EC-EGFR knockout in a conditional mouse model on vascular and renal function under control condition as well as in obesity and in comparison to VSMC-KO. Heart and lung weight, blood pressure and aortic transcriptome (determined by RNA-seq) were not affected by EC-EGFR-KO. Aortic reactivity to α1-adrenergic stimulation was not affected by EC-EGFR-KO contrary to VSMC-EGFR-KO. Endothelial-induced relaxation was reduced in abdominal aorta of EC-EGFR-KO animals, whereas it was enhanced in VSMC-EGFR-KO animals. Mesenteric arteries of EC-EGFR-KO animals showed enhanced sensitivity to α1-adrenergic stimulation, whereas endothelial-induced relaxation and vessel morphology were not affected. Renal weight, histomorphology, function (albumin excretion, serum creatinine, fractional water excretion) or transcriptome were not affected by EC-EGFR-KO, likewise in VSMC-EGFR-KO. High fat diet (HFD) over 18 weeks induced arterial wall thickening, renal weight increase, creatininemia, renal and aortic transcriptome alterations with a similar pattern in EC-EGFR-WT and EC-EGFR-KO animals by contrast to the previously reported impact of VSMC-EGFR-KO. HFD induced endothelial dysfunction in abdominal aortae of EC-EGFR-WT, which was not additive to the EC-EGFR-KO-induced endothelial dysfunction. As shown before, VSMC-EGFR-KO prevented HFD-induced endothelial dysfunction. HFD-induced albuminuria was less pronounced in EC-EGFR-KO animals and abrogated in VSMC-EGFR-KO animals. Our results indicate that EC-EGFR, in comparison to VSMC-EGFR, is of minor and opposite importance for basal renovascular function as well as for high fat diet-induced vascular remodeling and renal end organ damage.


Assuntos
Aorta Abdominal/metabolismo , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Receptores ErbB/metabolismo , Rim/metabolismo , Obesidade/metabolismo , Animais , Receptores ErbB/genética , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética
16.
Diabetologia ; 63(10): 2218-2234, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548701

RESUMO

AIMS/HYPOTHESIS: Obesity causes type 2 diabetes leading to vascular dysfunction and finally renal end-organ damage. Vascular smooth muscle (VSM) EGF receptor (EGFR) modulates vascular wall homeostasis in part via serum response factor (SRF), a major regulator of VSM differentiation and a sensor for glucose. We investigated the role of VSM-EGFR during obesity-induced renovascular dysfunction, as well as EGFR-hyperglycaemia crosstalk. METHODS: The role of VSM-EGFR during high-fat diet (HFD)-induced type 2 diabetes was investigated in a mouse model with inducible, VSM-specific EGFR-knockout (KO). Various structural and functional variables as well as transcriptome changes, in vivo and ex vivo, were assessed. The impact of hyperglycaemia on EGFR-induced signalling and SRF transcriptional activity and the underlying mechanisms were investigated at the cellular level. RESULTS: We show that VSM-EGFR mediates obesity/type 2 diabetes-induced vascular dysfunction, remodelling and transcriptome dysregulation preceding renal damage and identify an EGFR-glucose synergism in terms of SRF activation, matrix dysregulation and mitochondrial function. EGFR deletion protects the animals from HFD-induced endothelial dysfunction, creatininaemia and albuminuria. Furthermore, we show that HFD leads to marked changes of the aortic transcriptome in wild-type but not in KO animals, indicative of EGFR-dependent SRF activation, matrix dysregulation and mitochondrial dysfunction, the latter confirmed at the cellular level. Studies at the cellular level revealed that high glucose potentiated EGFR/EGF receptor 2 (ErbB2)-induced stimulation of SRF activity, enhancing the graded signalling responses to EGF, via the EGFR/ErbB2-ROCK-actin-MRTF pathway and promoted mitochondrial dysfunction. CONCLUSIONS/INTERPRETATION: VSM-EGFR contributes to HFD-induced vascular and subsequent renal alterations. We propose that a potentiated EGFR/ErbB2-ROCK-MRTF-SRF signalling axis and mitochondrial dysfunction underlie the role of EGFR. This advanced working hypothesis will be investigated in mechanistic depth in future studies. VSM-EGFR may be a therapeutic target in cases of type 2 diabetes-induced renovascular disease. DATA AVAILABILITY: The datasets generated during and/or analysed during the current study are available in: (1) share_it, the data repository of the academic libraries of Saxony-Anhalt ( https://doi.org/10.25673/32049.2 ); and (2) in the gene expression omnibus database with the study identity GSE144838 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144838 ). Graphical abstract.


Assuntos
Aorta/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/genética , Nefropatias Diabéticas/genética , Receptores ErbB/genética , Músculo Liso Vascular/metabolismo , Obesidade/metabolismo , Fator de Resposta Sérica/metabolismo , Actinas/metabolismo , Animais , Aorta/fisiopatologia , Linhagem Celular , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso , Obesidade/fisiopatologia , Transdução de Sinais , Remodelação Vascular , Quinases Associadas a rho/metabolismo
17.
Cell Mol Life Sci ; 77(5): 903-918, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31312877

RESUMO

MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among others cardiac hypertrophy and atrial fibrillation. The aim of our study was to evaluate the impact of miR-221/222 on cardiac electrical remodeling. Cardiac miR expression was analyzed in a mouse model with altered electrocardiography parameters and severe heart hypertrophy. Next generation sequencing revealed 14 differentially expressed miRs in hypertrophic hearts, with miR-221 and -222 being the strongest regulated miR-cluster. This increase was restricted to cardiomyocytes and not observed in cardiac fibroblasts. Additionally, we evaluated the change of miR-221/222 in vivo in two models of pharmacologically induced heart hypertrophy (angiotensin II, isoprenaline), thereby demonstrating a stimulus-induced increase in miR-221/222 in vivo by angiotensin II but not by isoprenaline. Whole transcriptome analysis by RNA-seq and qRT-PCR validation revealed an enriched number of downregulated mRNAs coding for proteins located in the T-tubule, which are also predicted targets for miR-221/222. Among those, mRNAs were the L-type Ca2+ channel subunits as well as potassium channel subunits. We confirmed that both miRs target the 3'-untranslated regions of Cacna1c and Kcnj5. Furthermore, enhanced expression of these miRs reduced L-type Ca2+ channel and Kcnj5 channel abundance and function, which was analyzed by whole-cell patch clamp recordings or Western blot and flux measurements, respectively. miR-221 and -222 contribute to the regulation of L-type Ca2+ channels as well as Kcnj5 channels and, therefore, potentially contribute to disturbed cardiac excitation generation and propagation. Future studies will have to evaluate the pathophysiological and clinical relevance of aberrant miR-221/222 expression for electrical remodeling.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , MicroRNAs/genética , Canais de Potássio/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Canais de Potássio/genética
18.
Front Physiol ; 10: 1118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555149

RESUMO

Vitamin D is thought to play a role in blood pressure regulation, which in turn can influence cardiovascular risk. Several meta-analyses of cohort studies found low serum levels of 25-hydroxyvitamin D to be associated with increased blood pressure or increased cardiovascular morbidity and mortality in the general population. Active vitamin D mediates its function via the vitamin D receptor (Vdr), which is a ligand-activated transcription factor. A suitable model to examine the causal role of vitamin D in blood pressure regulation and heart function is the Vdr knockout (Vdr-/-) mouse. To elucidate the role of vitamin D on blood pressure, heart function, and cardiac myocyte size, we conducted a long-term study using Vdr-/- mice and well-defined diets. Group 1 comprised Vdr-/- mice that received a high-calcium, high-phosphorus rescue diet to prevent hypocalcemia and a rickets phenotype. Groups 2 and 3 included Vdr+/+ mice that were fed either the rescue diet or a control diet containing normal amounts of these minerals. As Vdr is a nuclear factor that regulates transcription, we analyzed the renal mRNA expression and serum concentration of renin and found that the Vdr-/- group had an almost 50% higher renin mRNA expression in the kidney compared to both groups of Vdr+/+ mice. Additionally, serum concentration of renin in Vdr-/- mice was significantly higher than that of Vdr+/+ mice that received the rescue or control diet (+ 17%,+ 32%; P < 0.05). In contrast, renin activity was lower in Vdr-/- mice than in both groups of Vdr+/+ mice (P < 0.05). However, blood pressure, heart rate, cardiac myocyte sizes, and the expression of renal renin receptor, hepatic angiotensinogen and angiotensin II receptor, type 1, in kidney, liver and heart, did not differ between the three groups of mice. Additionally, data from transthoracic echocardiography did not indicate the role of Vdr on heart function, as the left ventricular ejection fraction, fractional shortening, and velocity of blood flow were comparable between the three groups. To conclude, the roles of Vdr and therefore most probably of vitamin D, in blood pressure regulation and heart function, were not confirmed by our findings.

19.
Br J Pharmacol ; 175(14): 2956-2967, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682743

RESUMO

BACKGROUND AND PURPOSE: The mineralocorticoid receptor (MR) contributes to fibrosis in various tissues, and MR antagonists, like eplerenone, are used to prevent fibrosis. The role of MR antagonists in hepatic fibrosis and cirrhosis is unknown. Here, we investigated the role of MRs and eplerenone in cirrhosis development. EXPERIMENTAL APPROACH: Liver fibrosis (5 weeks) and cirrhosis, without (8 weeks) and with ascites (12 weeks), were induced by CCl4 in rats and comprehensively analysed. The effect of eplerenone on the development of cirrhosis with ascites was assessed. MR expression, cellular and subcellular distribution and impact of hypoxia were investigated in vivo and ex vivo. Primary rat hepatocytes and cell lines were used to investigate MR trafficking and transcriptional activity mechanistically. KEY RESULTS: In cirrhosis with ascites, MR mRNA and protein expressions were reduced in hepatocytes of hypoxic areas. While in normoxic areas MRs were mainly cytosolic, the remaining MRs in hypoxic areas were mainly localized in the nuclei, indicating activation followed by translocation and degradation. Accordingly, eplerenone treatment prevented nuclear MR translocation and the worsening of cirrhosis. Exposing hepatocytes ex vivo to hypoxia induced nuclear MR translocation and enhanced transcriptional MR activity at response elements of the NF-κB pathway. CONCLUSIONS AND IMPLICATIONS: We showed for the first time that hypoxia leads to a pathogenetic ligand-independent activation of hepatic MRs during cirrhosis resulting in their nuclear translocation and transcriptional activation of the NF-κB pathway. Treatment with eplerenone prevented the worsening of cirrhosis by blocking this ligand-independent activation of the MR.


Assuntos
Eplerenona/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides/fisiologia , Animais , Tetracloreto de Carbono , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Eplerenona/farmacologia , Células HEK293 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Mineralocorticoides/genética
20.
Biochim Biophys Acta ; 1863(7 Pt A): 1519-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27012600

RESUMO

Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Trifosfato de Adenosina/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Endotelina-1/farmacologia , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/deficiência , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Regulação da Expressão Gênica , Genótipo , Inflamação/genética , Inflamação/metabolismo , Ligantes , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Estresse Oxidativo , Fenótipo , Fenilefrina/farmacologia , Cultura Primária de Células , Transdução de Sinais , Trombina/farmacologia , Fatores de Tempo , Vasopressinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...