Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Neurosci ; 26(9): 1505-1515, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563294

RESUMO

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/patologia , Neurônios/metabolismo , Neurogênese , Prosencéfalo/metabolismo , Organoides/metabolismo
3.
Nucleic Acids Res ; 51(10): e57, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37026484

RESUMO

Mosaic mutations can be used to track cell ancestries and reconstruct high-resolution lineage trees during cancer progression and during development, starting from the first cell divisions of the zygote. However, this approach requires sampling and analyzing the genomes of multiple cells, which can be redundant in lineage representation, limiting the scalability of the approach. We describe a strategy for cost- and time-efficient lineage reconstruction using clonal induced pluripotent stem cell lines from human skin fibroblasts. The approach leverages shallow sequencing coverage to assess the clonality of the lines, clusters redundant lines and sums their coverage to accurately discover mutations in the corresponding lineages. Only a fraction of lines needs to be sequenced to high coverage. We demonstrate the effectiveness of this approach for reconstructing lineage trees during development and in hematologic malignancies. We discuss and propose an optimal experimental design for reconstructing lineage trees.


Assuntos
Linhagem da Célula , Neoplasias , Software , Humanos , Células Germinativas , Mutação , Neoplasias/patologia
4.
Biol Psychiatry ; 90(11): 756-765, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34538422

RESUMO

BACKGROUND: Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear. The development of patient-derived induced pluripotent stem cells provides a unique opportunity to study human neurons with the exact genetic disruptions that cause Dup15q. METHODS: Here, we explored electrophysiological phenotypes in induced pluripotent stem cell-derived neurons from 4 patients with Dup15q compared with 6 unaffected control subjects, 1 patient with a 15q11-q13 paternal duplication, and 3 patients with Angelman syndrome. RESULTS: We identified several properties of Dup15q neurons that could contribute to neuronal hyperexcitability and seizure susceptibility. Compared with control neurons, Dup15q neurons had increased excitatory synaptic event frequency and amplitude, increased density of dendritic protrusions, increased action potential firing, and decreased inhibitory synaptic transmission. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared with control neurons, in part due to disruption of KCNQ2 potassium channels. CONCLUSIONS: Together, these data point to multiple electrophysiological mechanisms of hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Animais , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Neurônios , Fenótipo
5.
Science ; 371(6535): 1245-1248, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33737484

RESUMO

Mosaic mutations can be used to track cell lineages in humans. We used cell cloning to analyze embryonic cell lineages in two living individuals and a postmortem human specimen. Of 10 reconstructed postzygotic divisions, none resulted in balanced contributions of daughter lineages to tissues. In both living individuals, one of two lineages from the first cleavage was dominant across tissues, with 90% frequency in blood. We propose that the efficiency of DNA repair contributes to lineage imbalance. Allocation of lineages in postmortem brain correlated with anterior-posterior axis, associating lineage history with cell fate choices in embryos. We establish a minimally invasive framework for defining cell lineages in any living individual, which paves the way for studying their relevance in health and disease.


Assuntos
Blastômeros/citologia , Divisão Celular , Linhagem da Célula , Desenvolvimento Embrionário , Adulto , Idoso , Blastocisto/citologia , Células Sanguíneas , Diferenciação Celular , Linhagem Celular , Reparo do DNA , Feminino , Feto/citologia , Variação Genética , Genoma Humano , Humanos , Mutação INDEL , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Células-Tronco Neurais/citologia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...