Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15421, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965297

RESUMO

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Assuntos
Aedes , Imidazóis , Inseticidas , Larva , Aedes/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Imidazóis/toxicidade , Imidazóis/farmacologia , Inseticidas/toxicidade , Inseticidas/farmacologia , Humanos , Mosquitos Vetores/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Controle de Mosquitos/métodos
2.
Polymers (Basel) ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904500

RESUMO

The species of Candida present good capability to form fungal biofilms on polymeric surfaces and are related to several human diseases since many of the employed medical devices are designed using polymers, especially high-density polyethylene (HDPE). Herein, HDPE films containing 0; 0.125; 0.250 or 0.500 wt% of 1-hexadecyl-3-methylimidazolium chloride (C16MImCl) or its analog 1-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS) were obtained by melt blending and posteriorly mechanically pressurized into films. This approach resulted in more flexible and less brittle films, which impeded the Candida albicans, C. parapsilosis, and C. tropicalis biofilm formation on their surfaces. The employed imidazolium salt (IS) concentrations did not present any significant cytotoxic effect, and the good cell adhesion/proliferation of human mesenchymal stem cells on the HDPE-IS films indicated good biocompatibility. These outcomes combined with the absence of microscopic lesions in pig skin after contact with HDPE-IS films demonstrated their potential as biomaterials for the development of effective medical device tools that reduce the risk of fungal infections.

3.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679214

RESUMO

Four imidazolium-based ionic liquids (IL; 1-butyl-3-methylimidazolium chloride, 1-carboxymethyl-3-methylimidazolium chloride, 1,3-dicarboxymethylimidazolium chloride and 1-(2-hydroxyethyl) -3-methylimidazolium chloride) were tested as compatibilizers of microcrystalline cellulose (MCC). Subsequently, ethanolic IL solutions were prepared; MCC was mixed, and the mixtures were left to evaporate the ethanol at ambient conditions. These modified MCC were characterized and applied as reinforcements (5.0 and 10 phr) in an epoxy resin aiming to manufacture biobased composites with enhanced performances. The IL did not significantly modify the morphological and structural characteristics of such reinforcements. Regarding the thermal stability, the slight increase was associated with the MCC-IL affinity. The IL-modified MCC-epoxy composites presented improved mechanical responses, such as flexural strength (≈22.5%) and toughness behavior (≈18.6%), compared with pure epoxy. Such improvement was also obtained for the viscoelastic response, where the storage modulus at the glassy state depended on the MCC amount and IL type. These differences were associated with stronger hydrogen bonding between IL and epoxy hardener or the IL with MCC, causing a "bridging" effect between MCC and epoxy matrix.

4.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296593

RESUMO

A multifunctional designing approach is of great importance for advanced composite applications. This study assessed the use of ionic liquids (ILs) to modify the surface of carbon fiber (CF) and impart multifunctional characteristics to it. For that, ethanolic solutions of different ILs, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-3-methylimidazolium chloride and 1-(2-hydroxyethyl)-3-methylimidazolium chloride, at different concentrations, were used to treat the CF. Fourier-transform infrared spectroscopy confirmed the presence of IL on the CF surface. The contact angle for 1% w/v IL-treated CF and DGEBA epoxy decreased by up to 35%, corresponding to an increase in surface energy of fiber, accompanied by an increase of 91% in interfacial shear strength. These enhancements were achieved with the hydroxy-functionalized IL, showing the tunability of CF properties through the N-imidazolium substituent. An increase in crystallite size along the basal plane was also found due to the ordering of the graphitic structure on the surface. Moreover, there was a decrease in electrical resistivity of 77%. In all, the imidazolium ILs were considered a promising approach to induce multifunctional characteristics, namely enhanced interfacial strength and electrical conductivity, to unsized CF, which can also be beneficial for recycled fibers without deteriorating their inherent surface properties.

5.
Int J Hyg Environ Health ; 246: 114053, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36308781

RESUMO

One Health approaches are becoming increasingly necessary in the world we live in. Human beings, animals, plants and the environment are intrinsically interconnected and when some intervention occurs, mainly through the action of man himself, everyone suffers the consequences. The objective of this review was to collect data about the occurrence and dispersion of Naegleria fowleri, an amphizoic free-living amoeba, and its implications for health approaches through the One Health concept. N. fowleri is an opportunistic amoeba, better known as brain-eating amoeba, which causes Primary Amoebic Meningoencephalitis. This amoeba is widely distributed around the world, being isolated from different matrices of natural or anthropogenic environments with temperatures above 30 °C with an upper limit of 45-46 °C. Highly lethal, it has claimed numerous humans patients and only five people have survived the disease so far. Our results indicate that climate change plays a major role in the growth and dispersion of the pathogen in the environment, causing damage to humans and animals. Changes in temperature, antimicrobial resistance, possible transport of other microorganisms by the amoeba, conventional treatments with chlorination, among others, were addressed in our study and should be considered in order to raise questions and possible solutions to this problem that involves health as a whole. The diagnostic methods, prospection of new anti-Naegleria drugs and the control of this parasite in the environment are specific and urgent issues. We know that the human-animal-plants-environment spheres are inseparable, so it is necessary to turn a directed look at the One Health approaches related to N. fowleri.


Assuntos
Amebíase , Amoeba , Naegleria fowleri , Saúde Única , Animais , Humanos , Amebíase/epidemiologia , Amebíase/parasitologia , Temperatura
6.
Front Immunol ; 13: 1096312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733394

RESUMO

In this study we explored the previously established leishmanicidal activity of a complementary set of 24 imidazolium salts (IS), 1-hexadecylimidazole (C16Im) and 1-hexadecylpyridinium chloride (C16PyrCl) against Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) infantum chagasi. Promastigotes of L. amazonensis and L. infantum chagasi were incubated with 0.1 to 100 µM of the compounds and eight of them demonstrated leishmanicidal activity after 48 h - C10MImMeS (IC50 L. amazonensis = 11.6), C16MImPF6(IC50 L. amazonensis = 6.9), C16MImBr (IC50 L. amazonensis = 6), C16M2ImCl (IC50 L. amazonensis = 4.1), C16M4ImCl (IC50 L. amazonensis = 1.8), (C10)2MImCl (IC50 L. amazonensis = 1.9), C16Im (IC50 L. amazonensis = 14.6), and C16PyrCl (IC50 L. amazonensis = 4).The effect of IS on reactive oxygen species production, mitochondrial membrane potential, membrane integrity and morphological alterations of promastigotes was determined, as well as on L. amazonensis-infected macrophages. Their cytotoxicity against macrophages and human erythrocytes was also evaluated. The IS C10MImMeS, C16MImPF6, C16MImBr, C16M2ImCl, C16M4ImCl and (C10)2MImCl, and the compounds C16Im and C16PyrCl killed and inhibited the growth of promastigote forms of L. amazonensis and L. infantum chagasi in a concentration-dependent manner, contributing to a better understanding of the structure-activity relationship of IS against Leishmania. These IS induced ROS production, mitochondrial dysfunction, membrane disruption and morphological alterations in infective forms of L. amazonensis and killed intracellular amastigote forms in very low concentrations (IC50 amastigotes ≤ 0.3), being potential drug candidates against L. amazonensis.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmania mexicana , Animais , Camundongos , Humanos , Sais/farmacologia , Antiprotozoários/farmacologia , Camundongos Endogâmicos BALB C , Estresse Oxidativo
7.
Artigo em Português | LILACS, BBO - Odontologia | ID: biblio-1451919

RESUMO

Objetivo: O objetivo deste estudo foi avaliar o potencial antifúngico de um conjunto de sais imidazólicos (SI) frente a Candida albicans. Materiais e métodos: A avaliação an-tifúngica dos SI foi realizada por meio do teste de difusão em ágar, utilizando uma cepa de Candida albicans (ATCC 90028). Cinco diferentes SI foram sintetizados e testados no presente estudo: brometo de 1,8-bis(metilimidazólio-1-il) octano (MImC8MImBr2), metanossulfonato de 1,12-bis(-metilimidazólio-1-il) dodecano (MImC12MIm(MeS)2), clo-reto de 1-n-hexadecil-2,3-dimetilimidazólio (C16DMImCl), metanossulfonato de 1,10-bis(metilimidazólio-1-il) decano (MImC10MIm(MeS)2) e brometo de 1,10-bis(metilimidazólio--1-il) decano (MImC10MImBr2). O cloreto de cetilpiridíneo (C16PyrCl) foi utilizado como composto de referência e as soluções de digluconato de clorexidina (C34H54Cl2N10O14) e salina (NaCl 0,9%) foram utilizadas como controles po-sitivo e negativo, respectivamente. Resultados: Dentre os SI testados, MImC12MIm(MeS)2, MImC10MIm(MeS)2 e MImC10MImBr2 apresentaram os seguintes valores para os halos de inibição formados: 28,00 mm, 20,50 mm e 18,75 mm, respectivamente. Esses valores foram similares ou superiores inclusive aos encontrados para o controle positivo (14,87 mm) e o composto de referência (0 mm). Discussão: Os SI podem apresentar uma alternativa promissora às terapias com antifúngicos convencionais, concordando com estudos prévios. Entretanto, mais estudos in vitro e in vivosão necessários para avaliar o potencial antifúngico destes compostos frente a biofilmes multiespécies de C. albicans. Conclusão: Baseado nestes resultados, três dos SI testados apresentam atividade antifúngica in vitro promissora frente à Candida albicans.


Aim: This study aims to evaluate the antifungal potential of imidazolium salts (IS) against Candida albicans. Material and methods: Antifungal evaluation of the IS was perfor-med using the disk diffusion test, using a strain of Candida albicans (ATCC 90028). Five different IS were synthesized and tested in the present study: 1,8-bis(methylimidazolium-1-yl) octane bromide (MImC8MImBr2), 1,12-bis(methylimida-zolium-1-yl) dodecane methanesulfonate (MImC12MIm(-MeS)2), 1-n-hexadecyl-2,3-dimethylimidazolium chloride (C16DMImCl), 1,10-bis(methylimidazolium-1-yl) decane methanesulfonate (MImC10MIm(MeS)2) e 1,10-bis(me-thylimidazolium-1-yl) decane bromide (MImC10MImBr2). Cetylpyridinium chloride (C16PyrCl) was used as a reference substance. Chlorhexidine (C34H54Cl2N10O14) and saline (NaCl 0,9%) solutions were positive and negative controls, respectively. Results: Among the tested IS, MImC12MIm(-MeS)2, MImC10MIm(MeS)2 and MImC10MImBr2 showed the following values for inhibition halos: 28,00 mm, 20,50 mm and 18,75 mm, respectively. These values were similar or superior than those found for the positive control (14.87 mm) and reference (0 mm) substances. Discussion: IS can be a promising alternative to antifungal conventional therapies, as exemplified in previous studies. However, further in vitro and in vivo studies are needed to assess the antifungal potential of these compounds against Candida--mixed biofilms.Conclusion: Based on these results, three IS, tested in this study, have in vitro promissing antifungal potential against Candida albicans.


Assuntos
Sais , Candida albicans , Antifúngicos
8.
J Oral Pathol Med ; 50(5): 470-477, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33340378

RESUMO

BACKGROUND: Imidazolium salts (IS), ionic derivatives of neutral imidazoles, have properties that can be adjusted by structural modifications to their cations and anions, which makes this particular class of compounds a promising option for developing biologically active compounds. The anti-tumor effects of the IS 1-n-butyl-3-methylimidazolium chloride (C4 MImCl), 1-n-decyl-3-methylimidazolium chloride (C10 MImCl), 1-n-hexadecyl-3-methylimidazolium chloride (C16 MImCl), 1-n-hexadecyl-2,3-dimethylimidazolium chloride (C16 M2 ImCl), 1-n-octadecyl-3-methylimidazolium chloride (C18 MImCl), 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16 MImMeS), and 1-n-hexadecyl-2,3- dimethylimidazolium methanesulfonate (C16 M2 ImMeS) on oral squamous cell carcinoma (OSCC) have been studied here. METHODS: Oral squamous cell carcinoma cells (CAL27) were incubated with increasing IS doses and then submitted to proliferation (2D), cell death (2D) and spheroid assay (3D). RESULTS: The IS anti-tumor effect was dependent on both its N-alkyl chain length and anion, whereby C16 MImCl proved to be more effective in combination for inhibiting cell proliferation and cell-cell adhesion, outperforming the methylated C16 M2 ImCl derivative and, most importantly, the gold standard-cisplatin. In addition, C16 MImCl had little effect on keratinocytes and more pronounced effects on more aggressive tumor cells. It also exhibited similar effects on inducing cell death when compared to Cisplatin. This compound spread to a greater area of the tumor sphere and produced an enhanced number of apoptotic and necrotic cells in the tumor cell line, demonstrating only a small rise in the healthy cells. CONCLUSION: These data indicate that the effect of C16 MlmCl on OSCC is promising, as it is selective for cancer cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/tratamento farmacológico , Humanos , Neoplasias Bucais/tratamento farmacológico , Sais , Carcinoma de Células Escamosas de Cabeça e Pescoço
9.
Acta Parasitol ; 65(2): 317-326, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31939031

RESUMO

INTRODUCTION: Several strains of the free-living genus Acanthamoeba can cause granulomatous amoebic encephalitis (GAE), a rare chronic and slowly progressive infection of the central nervous system (CNS), and Acanthamoeba keratitis (AK), a sight-threatening eye infectious disease. AK incidence has increased with the popularization of the contact lens wear and its treatment is currently limited and frequently unsuccessful. As imidazolium salts (IS), cationic imidazole derivatives, have promising antimicrobial potential. MATERIALS AND METHODS: The present study evaluated the amoebicidal activity of four IS; 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS), chloride (C16MImCl) and bis (triluoromethylsulfonyl) imide (C16MImNTf2 ), and 1-methyl-3-n-octadecylimidazolium chloride (C18MImCl), against the Acanthamoeba castellanii (ATCC30010) environmental strain and a clinical isolate (genotype T4). RESULTS: Three IS showed being lethal to 100% of the Acanthamoeba trophozoites at the minimum inhibitory concentrations of 125 and 62.5 µg/mL (C16MImMeS), 31.25 and 62.5 µg/mL (C16MImCl), and 125 and 125 µg/mL (C18MImCl) for ATCC30010 and isolate T4, respectively. C16MImNTf2 did not demonstrate amoebicidal activity. All active IS caused the hemolysis of erythrocytes. The cytotoxic effect of the IS was tested in RAW macrophages and human brain microvascular endothelial cells, which demonstrated cytotoxicity in all concentrations tested against both cell lines. As a consequence, these IS with amoebicidal activity presented low selectivity index values (SI) (SI < 1.0), demonstrating lack of parasite selectivity. CONCLUSION: Thus, C16MImMeS, C16MImCl, and C18MImCl seem to hold greater promise as components for contact lens cleaning and disinfection solutions, instead of direct human application.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Imidazóis/farmacologia , Acanthamoeba castellanii/crescimento & desenvolvimento , Amebicidas/química , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Cultivadas , Células Endoteliais , Meio Ambiente , Hemólise , Humanos , Imidazóis/química , Concentração Inibidora 50 , Cinética , Imageamento por Ressonância Magnética , Camundongos , Testes de Sensibilidade Parasitária , Células RAW 264.7 , Trofozoítos/efeitos dos fármacos
10.
Sci Rep ; 9(1): 16164, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700056

RESUMO

Mosquitoes are important vectors of pathogens due to their blood feeding behavior. Aedes aegypti (Diptera: Culicidae) transmits arboviruses, such as dengue, Zika, and Chikungunya. This species carries several bacteria that may be beneficial for its biological and physiological development. Therefore, studying the response of its microbiota to chemical products could result in vector control. Recently, imidazolium salts (IS) were identified as effective Ae. aegypti larvicides. Considering the importance of the mosquito microbiota, this study addressed the influence of IS on the bacteria of Ae. aegypti larvae. After exposition of larvae to different IS concentrations, the cultured microbiota was identified through culturomics and mass spectrometry, and the non-cultivated microbiota was characterized by molecular markers. In addition, the influence of the IS on axenic larvae was studied for comparison. There was an alteration in both cultivable species and in their diversity, including modifications in bacterial communities. The axenic larvae were less susceptible to the IS, which was increased after exposing these larvae to bacteria of laboratory breeding water. This highlights the importance of understanding the role of the larval microbiota of Ae. aegypti in the development of imidazolium salt-based larvicides. Such effect of IS towards microbiota of Ae. aegypti larvae, through their antimicrobial action, increases their larvicidal potential.


Assuntos
Aedes/microbiologia , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Imidazóis/farmacologia , Inseticidas/farmacologia , Animais , Bactérias/classificação , Larva/microbiologia
11.
Int Immunopharmacol ; 63: 101-109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30077823

RESUMO

The available chemotherapeutic drugs for the treatment of leishmaniasis present problems relating to efficacy, emergence of parasite resistance, and adverse effects and cost. Azole antifungal drugs have been repurposed for this proposition but the clinical response has been variable. In this sense, this study assessed the leishmanicidal and immunomodulatory activities of azoles-derived imidazolium salts (IS), being the ionic imidazole-derived equivalents: 1-n-butyl-3-methylimidazolium chloride (C4MImCl), 1-n-decyl-3-methylimidazolium chloride (C10MImCl), 1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl), 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS), 1-n-hexadecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C16MImNTf2) and 1-methyl-3-n-octadecylimidazolium chloride (C18MImCl). Promastigotes of Leishmania amazonensis were incubated with IS at concentrations ranging from 0.1 to 100 µM, and the parasite survival was monitored. The effects of IS on reactive oxygen species (ROS) production and mitochondrial membrane potential of promastigotes, as well as on cytotoxicity against peripheral blood mononuclear cells (PBMC) and human erythrocytes were determined. Besides, the activities of IS against amastigotes and nitric oxide production were also evaluated. The IS inhibited parasite growth and showed potent leishmanicidal activity against promastigotes of L. amazonensis. In addition, IS induced mitochondrial dysfunction and ROS production in parasites, and presented low cytotoxicity against PBMC and human erythrocytes. Furthermore, at very low concentration (0.5 µM), C18MImCl, C16MImMeS, C16MImCl, C10MImCl and C16MImNTf2 were able to kill intramacrophage parasites at levels of 91.3, 100, 94.4, 95.3 and 35.6%, respectively. These results indicate that IS are promising candidates for the development of drugs against L. amazonensis.


Assuntos
Antiprotozoários/farmacologia , Imidazóis/farmacologia , Leishmania mexicana/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Humanos , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sais
12.
Pest Manag Sci ; 74(4): 1013-1019, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29193680

RESUMO

BACKGROUND: Aedes aegypti is an important mosquito species that can transmit several arboviruses such as dengue fever, yellow fever, chikungunya and zika. Because these mosquitoes are becoming resistant to most chemical insecticides used around the world, studies with new larvicides should be prioritized. Based on the known biological profile of imidazolium salts (IS), the objective of this study was to evaluate the potential of six IS as larvicides against Ae. aegypti, as tested against Ae. aegypti larvae. Larval mortality was measured after 24 and 48 h, and residual larvicidal activity was also evaluated. RESULTS: Promising results were obtained with aqueous solutions of two IS: 1-n-octadecyl-3-methylimidazolium chloride (C18 MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16 MImMeS), showing up to 90% larval mortality after 48 h exposure. C18 MImCl was more effective than C16 mIMeS, causing mortality until day 15 after exposure. An application of C18 MImCl left to dry under ambient conditions for at least 2 months and then dissolved in water showed a more pronounced residual effect (36 days with 95% mortality and 80% mortality up to 78 days). CONCLUSION: This is the first study to show the potential of IS in the control of Ae. aegypti. Further studies are needed to understand the mode of action of these compounds in the biological development of this mosquito species. © 2017 Society of Chemical Industry.


Assuntos
Aedes , Imidazóis , Controle de Insetos , Inseticidas , Mesilatos , Aedes/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento
13.
Acta sci., Health sci ; 37(1): 63-68, Jun. 22, 2015.
Artigo em Inglês | LILACS | ID: biblio-832154

RESUMO

Zinc (Zn) is an essential trace element for cellular viability, but concentrations above physiologic level may lead to cellular damage. The purpose of the present study was to evaluate the in vitro ZnCl2 genotoxicity and cytotoxicity in human leukocyte cells. This was assessed in an unprecedented way that correlated the level of intracellular Zn after cell exposition with the cellular damage. The exposure to increased Zn concentrations (2.5-20 µg mL-1), showed significantly reduced cellular leukocyte viability. However, significant DNA damages were observed only when the Zn exposure concentrations were from 10-20 µg mL-1. The Zn intracellular levels found in leukocytes was from 72.25-268.9 ρ g cell-1, starting to induce cytotoxicity and genotoxicity at concentrations of 95.68 and 126.2 ρg cell-1, respectively. The relationship between the exposure concentration and intracellular levels of Zn suggests that the influx of Zn, in the form of ZnCl2, occurs in human leukocytes under zero-order kinetics.


O Zinco (Zn) é um elemento traço essencial para a viabilidade celular, mas em concentrações acima dos níveis fisiológicos pode conduzir a danos celulares. A proposta do presente estudo foi avaliar a citotoxicidade e genotoxicidade do ZnCl2 em leucócitos humanos in vitro. De maneira sem precedentes, foi acessado o nível de Zn intracelular após exposição e relacionado com o nível de dano celular. A exposição a crescentes concentrações de Zn (2,5-20 µg mL-1), mostraram significante redução da viabilidade celular dos leucócitos. Entretanto, danos significativos ao DNA foram encontrados somente a partir das concentrações de exposição ao Zn de 10-20 µg mL-1. Os níveis intracelulares de Zn encontrados nos leucócitos foram de 72,25-268,9 ρg célula-1, começando a induzir citotoxicidade e genotoxicidade nas concentrações de 95,68 and 126,2 ρg célula-1, respectivamente. A relação entre a concentração de exposição e os níveis intracelulares de Zn sugerem que o influxo de Zn, sob a forma de ZnCl2, ocorre em cinética de ordem zero em leucócitos humanos.


Assuntos
Zinco/toxicidade , Antígenos HLA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...