Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799449

RESUMO

It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3He/4He (up to 8.9RA) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3He/4He >10.3RA (and potentially up to 26RA, similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1RA). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3He/4He values in central Panama are likely derived from the infiltration of a Galápagos plume-like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a "mantle wind" toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.

2.
Sci Data ; 6(1): 284, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767867

RESUMO

In 2017, fluid and gas samples were collected across the Costa Rican Arc. He and Ne isotopes, C isotopes as well as total organic and inorganic carbon concentrations were measured. The samples (n = 24) from 2017 are accompanied by (n = 17) samples collected in 2008, 2010 and 2012. He-isotopes ranged from arc-like (6.8 RA) to crustal (0.5 RA). Measured dissolved inorganic carbon (DIC) δ13CVPDB values varied from 3.55 to -21.57‰, with dissolved organic carbon (DOC) following the trends of DIC. Gas phase CO2 only occurs within ~20 km of the arc; δ13CVPDB values varied from -0.84 to -5.23‰. Onsite, pH, conductivity, temperature and dissolved oxygen (DO) were measured; pH ranged from 0.9-10.0, conductivity from 200-91,900 µS/cm, temperatures from 23-89 °C and DO from 2-84%. Data were used to develop a model which suggests that ~91 ± 4.0% of carbon released from the slab/mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition with an additional 3.3 ± 1.3% incorporated into autotrophic biomass.

3.
Front Microbiol ; 8: 916, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588569

RESUMO

Uplifted ultramafic rocks represent an important vector for the transfer of carbon and reducing power from the deep subsurface into the biosphere and potentially support microbial life through serpentinization. This process has a strong influence upon the production of hydrogen and methane, which can be subsequently consumed by microbial communities. The Santa Elena Ophiolite (SEO) on the northwestern Pacific coast of Costa Rica comprises ~250 km2 of ultramafic rocks and mafic associations. The climatic conditions, consisting of strongly contrasting wet and dry seasons, make the SEO a unique hydrogeological setting, where water-rock reactions are enhanced by large storm events (up to 200 mm in a single storm). Previous work on hyperalkaline spring fluids collected within the SEO has identified the presence of microorganisms potentially involved in hydrogen, methane, and methanol oxidation (such as Hydrogenophaga, Methylobacterium, and Methylibium spp., respectively), as well as the presence of methanogenic Archaea (such as Methanobacterium). Similar organisms have also been documented at other serpentinizing sites, however their functions have not been confirmed. SEO's hyperalkaline springs have elevated methane concentrations, ranging from 145 to 900 µM, in comparison to the background concentrations (<0.3 µM). The presence and potential activity of microorganisms involved in methane cycling in serpentinization-influenced fluids from different sites within the SEO were investigated using molecular, geochemical, and modeling approaches. These results were combined to elucidate the bioenergetically favorable methane production and/or oxidation reactions in this tropical serpentinizing environment. The hyperalkaline springs at SEO contain a greater proportion of Archaea and methanogens than has been detected in any terrestrial serpentinizing system. Archaea involved in methanogenesis and anaerobic methane oxidation accounted from 40 to 90% of total archaeal sequences. Genes involved in methanogenic metabolisms were detected from the metagenome of one of the alkaline springs. Methanogenic activities are likely to be facilitated by the movement of nutrients, including dissolved inorganic carbon (DIC), from surface water and their infiltration into serpentinizing groundwater. These data provide new insight into methane cycle in tropical serpentinizing environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA