Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanophotonics ; 13(10): 1773-1780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681680

RESUMO

InAs/AlSb quantum cascade detectors (QCDs) grown strain-balanced on GaSb substrates are presented. This material system offers intrinsic performance-improving properties, like a low effective electron mass of the well material of 0.026 m 0, enhancing the optical transition strength, and a high conduction band offset of 2.28 eV, reducing the noise and allowing for high optical transition energies. InAs and AlSb strain balance each other on GaSb with an InAs:AlSb ratio of 0.96:1. To regain the freedom of a lattice-matched material system regarding the optimization of a QCD design, submonolayer InSb layers are introduced. With strain engineering, four different active regions between 3.65 and 5.5 µm were designed with InAs:AlSb thickness ratios of up to 2.8:1, and subsequently grown and characterized. This includes an optimized QCD design at 4.3 µm, with a room-temperature peak responsivity of 26.12 mA/W and a detectivity of 1.41 × 108 Jones. Additionally, all QCD designs exhibit higher-energy interband signals in the mid- to near-infrared, stemming from the InAs/AlSb type-II alignment and the narrow InAs band gap.

2.
Phys Rev Lett ; 132(4): 046302, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335369

RESUMO

We present an investigation into the vertical transport through 13 different superlattice structures, where the well and barrier widths, doping concentration, dopant position, and contact layers were varied. Although superlattices have been extensively studied since 1970, there is a lack of publications on transport through superlattices similarly low doped as THz quantum cascade lasers (QCLs), for which the doping is in the 3-5×10^{10} cm^{-2} range. The superlattices presented are doped in the same range as THz QCLs, with contact layers and fabrication comparable to high-temperature THz QCLs. The temperature-dependent current-voltage characteristics were measured starting from 5 K and an anomalous temperature effect was observed at the first plateau. The measured current through the superlattice first decreases before increasing again with increasing temperature, resulting in the lowest current occurring at 75-110 K. This behavior is also observed in some THz QCLs. The effect disappears for thinner barriers, higher quantum well doping, or modified contact layers, indicating a strong dependency on band bending, due to the large difference in the doping of the contact layers and the superlattice, which is confirmed with multiscattering Büttiker simulations.

3.
Science ; 382(6673): 907-911, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995251

RESUMO

Strange-metal behavior has been observed in materials ranging from high-temperature superconductors to heavy fermion metals. In conventional metals, current is carried by quasiparticles; although it has been suggested that quasiparticles are absent in strange metals, direct experimental evidence is lacking. We measured shot noise to probe the granularity of the current-carrying excitations in nanowires of the heavy fermion strange metal YbRh2Si2. When compared with conventional metals, shot noise in these nanowires is strongly suppressed. This suppression cannot be attributed to either electron-phonon or electron-electron interactions in a Fermi liquid, which suggests that the current is not carried by well-defined quasiparticles in the strange-metal regime that we probed. Our work sets the stage for similar studies of other strange metals.

4.
Opt Express ; 27(15): 20688-20693, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510157

RESUMO

We demonstrate the first lasing emission of a thermo-electrically cooled terahertz quantum cascade laser (THz QCL). A high temperature three-well THz QCL emitting at 3.8 THz is mounted to a novel five-stage thermoelectric cooler reaching a temperature difference of ΔT = 124 K. The temperature and time-dependent laser performance is investigated and shows a peak pulse power of 4.4 mW and a peak average output power of 100 µW for steady-state operation.

5.
Nanotechnology ; 30(6): 065602, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30523852

RESUMO

The addition of boron to GaAs nanowires grown by self-catalyzed molecular beam epitaxy was found to have a strong effect on the nanowire morphology, with axial growth greatly reduced as the nominal boron concentration was increased. Transmission electron microscopy measurements show that the Ga catalyst droplet was unintentionally consumed during growth. Concurrent radial growth, a rough surface morphology and tapering of nanowires grown under boron flux suggest that this droplet consumption is due to reduced Ga adatom diffusion on the nanowire sidewalls in the presence of boron. Modelling of the nanowire growth puts the diffusion length of Ga adatoms under boron flux at around 700-1000 nm. Analyses of the nanowire surfaces show regions of high boron concentration, indicating the surfactant nature of boron in GaAs.

6.
Sci Rep ; 8(1): 7998, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789653

RESUMO

We demonstrate the on-chip generation of twisted light beams from ring quantum cascade lasers. A monolithic gradient index metamaterial is fabricated directly into the substrate side of the semiconductor chip and induces a twist of the light's wavefront. This significantly influences the obtained beam pattern, which changes from a central intensity minimum to a maximum depending on the discontinuity count of the metamaterial. Our design principle provides an interesting alternative to recent implementations of microlasers operating at an exceptional point.

7.
ACS Photonics ; 4(4): 957-962, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28470028

RESUMO

We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm-2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm-2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.

8.
ACS Photonics ; 3(10): 1794-1798, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27785455

RESUMO

The ubiquitous trend toward miniaturized sensing systems demands novel concepts for compact and versatile spectroscopic tools. Conventional optical sensing setups include a light source, an analyte interaction region, and a separate external detector. We present a compact sensor providing room-temperature operation of monolithic surface-active lasers and detectors integrated on the same chip. The differentiation between emitter and detector is eliminated, which enables mutual commutation. Proof-of-principle gas measurements with a limit of detection below 400 ppm are demonstrated. This concept enables a crucial miniaturization of sensing devices.

9.
Analyst ; 141(22): 6202-6207, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27508281

RESUMO

This study shows the first combination of a ring-shaped vertically emitting quantum cascade laser (riQCL) providing two distinct emission wavelengths combined with a substrate-integrated hollow waveguide (iHWG). This ultra-compact riQCL-iHWG gas sensing device enables the simultaneous detection of two vapor phase species - here, furan and 2-methoxyethanol - providing distinctive absorption features at the emission wavelengths of the riQCL (i.e., 1144 and 1170 cm-1). Hence, multianalyte gas sensing via a unique mid-infrared (MIR) sensor concept is demonstrated.

10.
Sci Rep ; 6: 21795, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887891

RESUMO

We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0-70% for propane and 0-90% for isobutane were reached at a laser operation wavelength of 6.5 µm utilizing a 10 cm gas cell in double pass configuration.

11.
Light Sci Appl ; 5(9): e16147, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167188

RESUMO

We directly measure optical bound states in the continuum (BICs) by embedding a photodetector into a photonic crystal slab. The BICs observed in our experiment are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors in the photonic band structure. Our measurements were confirmed through a rigorously coupled-wave analysis simulation in conjunction with temporal coupled mode theory. Polarization mixing between photonic crystal slab modes was observed and described using a plane wave expansion simulation. The ability to probe the field intensity inside the photonic crystal and thereby to directly measure BICs represents a milestone in the development of integrated opto-electronic devices based on BICs.

12.
Sci Rep ; 5: 16668, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26573341

RESUMO

We introduce ring lasers with continuous π-phase shifts in the second order distributed feedback grating. This configuration facilitates insights into the nature of the modal outcoupling in an optical cavity. The grating exploits the asymmetry of whispering gallery modes and induces a rotation of the far field pattern. We find that this rotation can be connected to the location of the mode relative to the grating. Furthermore, the direction of rotation depends on the radial order of the whispering gallery mode. This enables a distinct identification and characterization of the mode by simple analysis of the emission beam.

13.
Opt Express ; 23(3): 3581-8, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836210

RESUMO

We demonstrate the on-chip generation and detection of terahertz radiation in coupled cavity systems using a single semiconductor heterostructure. Multiple sections of a terahertz quantum cascade laser structure in a double-metal waveguide are optically coupled and operate either as a laser or an integrated emission monitor. A detailed analysis of the photon-assisted carrier transport in the active region below threshold reveals the detection mechanism for photons emitted by the very same structure above threshold. Configurations with a single laser cavity and two coupled laser cavities are studied. It is shown that the integrated detector can be used for spatial sensing of the light intensity within a coupled cavity.

14.
Opt Express ; 22(21): 26294-301, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401662

RESUMO

We report on quantum cascade lasers (QCLs) with a tilted facet utilizing their polarization property. Contrary to diode lasers, QCLs generate purely TM polarized light due to the intersubband selection rules. This property enables the utilization of reflectivity in terms of only TM polarized light (TM reflectivity). The TM reflectivity is reduced by tilting the front facet, resulting in enhanced light output power from the tilted facet. The peak output power of a QCL with a facet angle of 12° are increased by 31 %. The slope efficiency of a QCL with a facet angle of 17° are increased by 43 %. Additionally, a peculiar property of TM reflectivity, the Brewster angle, is investigated by using COMSOL simulations to find its availability in QCLs.


Assuntos
Técnicas de Química Analítica/instrumentação , Lasers Semicondutores , Luz , Espectrofotometria Infravermelho/instrumentação , Desenho de Equipamento
15.
Opt Express ; 22(13): 15829-36, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977840

RESUMO

We present methods for beam modifications of ring quantum cascade lasers emitting around λ = 9µm, which are based on novel distributed feedback grating designs. This includes the creation of a rotationally symmetric far field with a central intensity maximum using an off-center grating as well as the generation of partial radially polarized emission beams induced by a rotation of the grating slits.

16.
Nat Commun ; 5: 4085, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24905443

RESUMO

The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8-7 µV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0-60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication.


Assuntos
Desenho de Equipamento , Miniaturização , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Luz , Dispositivos Ópticos , Espectrofotometria Infravermelho
17.
Opt Express ; 22(1): 274-82, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24514988

RESUMO

We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.


Assuntos
Lasers , Nanofios/química , Nanofios/efeitos da radiação , Radiação Terahertz , Desenho de Equipamento , Análise de Falha de Equipamento , Nanofios/ultraestrutura
18.
Opt Express ; 21(13): 15869-77, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842373

RESUMO

We present a technique for enhancing the light output power of quantum cascade lasers (QCLs) by tilting of the front facet, which leads to a change of the modal reflectivity, resulting in an asymmetric light intensity distribution along the laser cavity. This asymmetry provides most of the light being emitted through one facet of the laser. An experimental study of threshold current, slope efficiency and light output power as a function of the front facet angles were performed and compared to conventional QCLs. The lasers with a front facet angle of 8° shows a 20% improved power output from the front facet.

19.
Opt Express ; 21(6): 7209-15, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546105

RESUMO

A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms. In the case of an InGaAs/GaAsSb heterostructure, the pronounced interface asymmetry leads to a significantly better performance with negative bias polarity and can even lead to unidirectionally working devices, although the nominal band structure is symmetric. The results are a direct experimental proof that interface roughness scattering has a major impact on transport/lasing performance.


Assuntos
Lasers , Luz , Refratometria/instrumentação , Refratometria/métodos , Espalhamento de Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teoria Quântica
20.
Sensors (Basel) ; 13(2): 2196-205, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389348

RESUMO

We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm⁻¹, which indicates its use for single mode laser arrays. We have measured a peak signal of 191.5 mV at the on-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...