Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Pathog ; 10(10): e1004413, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329394

RESUMO

Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 ß-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy.


Assuntos
Aspergillus fumigatus/metabolismo , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Aspergilose Pulmonar/microbiologia , Fatores de Transcrição/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos
3.
J Biotechnol ; 169: 82-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24246269

RESUMO

Acremonium chrysogenum is the natural producer of the beta-lactam antibiotic cephalosporin C and therefore of significant biotechnological importance. Here we identified and characterized the xylanase-encoding xyl1 gene and demonstrate that its promoter, xyl1(P), is suitable for conditional expression of heterologous genes in A. chrysogenum. This was shown by xylose and xylan-inducible xyl1(P)-driven expression of genes encoding green fluorescence protein and phleomycin resistance. Moreover, we demonstrate the potential of the xyl1(P) promoter for selection marker recycling. Taken together, these finding will help to overcome the limitation in genetic tools in this important filamentous fungus.


Assuntos
Acremonium/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas , Xilanos/farmacologia , Xilose/farmacologia , Xilosidases/genética , Acremonium/efeitos dos fármacos , Acremonium/metabolismo , Regulação da Expressão Gênica/genética , Fleomicinas/metabolismo
4.
Mol Imaging Biol ; 16(1): 102-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23818006

RESUMO

PURPOSE: (68)Ga-triacetylfusarinine C ((68)Ga-TAFC) and (68)Ga-ferrioxamine E ((68)Ga-FOXE) showed excellent targeting properties in Aspergillus fumigatus rat infection model. Here, we report on the comparison of specificity towards different microorganisms and human lung cancer cells (H1299). PROCEDURES: The in vitro uptake of (68)Ga-TAFC and (68)Ga-FOXE was studied in various fungal, bacterial and yeast cultures as well as in H1299 cells. The in vivo imaging was studied in fungal and bacterial rat infection and inflammation models. RESULTS: (68)Ga-TAFC and (68)Ga-FOXE showed rapid uptake in A. fumigatus cultures, significantly lower in other fungal species and almost no uptake in other microorganisms and H1299 cells, except for (68)Ga-FOXE in Staphylococcus aureus. (68)Ga-TAFC and (68)Ga-FOXE revealed rapid uptake in the lungs of A. fumigatus-infected rats, low accumulation in sterile inflammation and no uptake in bacterial abscess. CONCLUSIONS: We have shown that (68)Ga-FOXE and (68)Ga-TAFC have high uptake in A. fumigatus both in vitro and in vivo. (68)Ga-TAFC showed higher specificity, while (68)Ga-FOXE showed higher sensitivity.


Assuntos
Aspergilose/diagnóstico por imagem , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Compostos Férricos , Ácidos Hidroxâmicos , Peptídeos Cíclicos , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Compostos Férricos/química , Compostos Férricos/farmacocinética , Fluordesoxiglucose F18 , Radioisótopos de Gálio/farmacocinética , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacocinética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Ratos , Ratos Endogâmicos Lew , Sideróforos/metabolismo
5.
Appl Environ Microbiol ; 79(23): 7534-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038704

RESUMO

Siderophore-mediated iron handling is crucial for the virulence of Aspergillus fumigatus. Here we identified a new component of its siderophore metabolism, termed SidJ, which is encoded by AFUA_3G03390. The encoding gene is localized in a siderophore biosynthetic gene cluster that is conserved in a variety of fungi. During iron starvation, SidJ deficiency resulted in decreased growth and increased intracellular accumulation of hydrolysis products of the siderophore fusarinine C. The implied role in siderophore hydrolysis is consistent with a putative esterase domain in SidJ, which now represents the first functionally characterized member of the DUF1749 (domain of unknown function) protein family, with members found exclusively in fungi and plants.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Sideróforos/metabolismo , Vias Biossintéticas/genética , Deleção de Genes , Hidrólise , Família Multigênica
6.
Appl Environ Microbiol ; 79(21): 6670-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974138

RESUMO

The filamentous mold Aspergillus fumigatus causes invasive aspergillosis, a potentially life-threatening infectious disease, in humans. The sidE gene encodes a bimodular peptide synthetase and was shown previously to be strongly upregulated during initiation of murine lung infection. In this study, we characterized the two adenylation domains of SidE with the ATP-[(32)P]pyrophosphate exchange assay in vitro, which identified fumarate and l-alanine, respectively, as the preferred substrates. Using full-length holo-SidE, fumarylalanine (FA) formation was observed in vitro. Furthermore, FA was identified in A. fumigatus culture supernatants under inducing conditions, unless sidE was genetically inactivated. As FA is structurally related to established pharmaceutical products exerting immunomodulatory activity, this work may contribute to our understanding of the virulence of A. fumigatus.


Assuntos
Alanina/biossíntese , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Fumaratos/metabolismo , Peptídeo Sintases/metabolismo , Filogenia , Alanina/metabolismo , Sequência de Bases , Northern Blotting , Escherichia coli , Teste de Complementação Genética , Dados de Sequência Molecular , Peptídeo Sintases/genética , Plasmídeos/genética , Alinhamento de Sequência , Virulência
7.
PLoS One ; 8(6): e67426, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825660

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus produces siderophores for uptake and storage of iron, which is essential for its virulence. The main precursor of siderophore biosynthesis (SB), ornithine, can be produced from glutamate in the mitochondria or by cytosolic hydrolysis of ornithine-derived arginine. Here, we studied the impact of mitochondrial versus cytosolic ornithine biosynthesis on SB by comparison of the arginine auxotrophic mutants ΔargEF and ΔargB, which lack and possess mitochondrial ornithine production, respectively. Deficiency in argEF (encoding acetylglutamate kinase and acetylglutamyl-phosphate-reductase), but not argB (encoding ornithine transcarbamoyl transferase) decreased (i) the cellular ornithine content, (ii) extra- and intracellular SB, (iii) growth under harsh iron starvation, (iv) resistance to the ornithine decarboxylase inhibitor eflornithine, and (v) virulence in the Galleria mellonella larvae model. These lines of evidence indicate that SB is mainly fueled by mitochondrial rather than cytosolic ornithine production and underline the role of SB in virulence. Ornithine content and SB of ΔargB increased with declining arginine supplementation indicating feedback-inhibition of mitochondrial ornithine biosynthesis by arginine. In contrast to SB, the arginine and polyamine contents were only mildly affected in ΔargEF, indicating prioritization of the latter two ornithine-consuming pathways over SB. These data highlight the metabolic differences between the two arginine auxotrophic mutants ΔargEF and ΔargB and demonstrate that supplementation of an auxotrophic mutant does not restore the wild type metabolism at the molecular level, a fact to be considered when working with auxotrophic mutants. Moreover, cross pathway control-mediating CpcA was found to influence the ornithine pool as well as biosynthesis of siderophores and polyamines.


Assuntos
Arginina/metabolismo , Aspergillus fumigatus/metabolismo , Ornitina/metabolismo , Poliaminas/metabolismo , Sideróforos/metabolismo , Mitocôndrias/metabolismo , Ornitina/biossíntese , Transcrição Gênica , Regulação para Cima
8.
Mol Microbiol ; 88(5): 862-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23617799

RESUMO

Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein-tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl-CoA ligase), SidH (mevalonyl-CoA hydratase) and SidF (anhydromevalonyl-CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH-targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen-type siderophore-producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus nidulans/enzimologia , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Peroxissomos/metabolismo , Sideróforos/metabolismo , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Sequência Conservada , Redes e Vias Metabólicas/genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Homologia de Sequência de Aminoácidos
9.
J Biotechnol ; 163(1): 77-80, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23089729

RESUMO

The filamentous fungus Acremonium chrysogenum is of enormous biotechnological importance as it represents the natural producer of the beta-lactam antibiotic cephalosporin C. However, a limitation in genetic tools, e.g. promoters for conditional gene expression, impedes genetic engineering of this fungus. Here we demonstrate that in A. chrysogenum iron starvation induces the production of the extracellular siderophores dimerumic acid, coprogen B, 2-N-methylcoprogen B and dimethylcoprogen as well as expression of the putative siderophore transporter gene, mir1. Moreover, we show that the promoter of mir1, mir1(P), is suitable for conditional expression of target genes in A. chrysogenum as shown by mir1(P)-driven and iron starvation-induced expression of genes encoding green fluorescence protein and phleomycin resistance. The obtained iron-starvation dependent phleomycin resistance indicates the potential use of this promoter for selection marker recycling. Together with easy scorable siderophore production, the co-regulation of mir1 expression and siderophore production facilitates the optimization of the inducing conditions of this expression system.


Assuntos
Acremonium/genética , Acremonium/metabolismo , Regulação Fúngica da Expressão Gênica , Engenharia Genética/métodos , Ferro/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Regiões Promotoras Genéticas , Sideróforos/metabolismo , Estresse Fisiológico/genética
10.
Metallomics ; 4(12): 1262-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23151814

RESUMO

Iron is an essential element for all eukaryotes but its excess has deleterious effects. Aspergillus fumigatus produces extracellular siderophores for iron uptake and the intracellular siderophore ferricrocin (FC) for distribution and storage of iron. Iron excess has previously been shown to increase the content of ferric FC and the expression of the putative vacuolar iron importer CccA (AFUA_4G12530), indicating a role of both the vacuole and FC in iron detoxification. In this study, we show that CccA-deficiency decreases iron resistance in particular in combination with derepressed iron uptake, while overproduction of CccA increases iron resistance. Green fluorescence protein-tagging confirmed localization of CccA in the vacuolar membrane. In contrast to CccA-deficiency, inactivation of FC biosynthesis did not affect iron resistance, which indicates that vacuolar rather than FC-mediated iron storage is the major iron detoxifying mechanism. After uptake, extracellular siderophore backbones are hydrolyzed and recycled. Lack of FC, CccA, and in particular lack of both increased the cellular content of iron chelated by siderophore breakdown products. These data indicate that the transfer of iron from extracellular siderophores to the metabolism, FC or the vacuole precedes recycling of siderophore breakdown products. Furthermore, this study indicates that CccA does not play an exclusive role in vacuolar iron storage for nutritional reuse.


Assuntos
Aspergillus fumigatus/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Aspergillus fumigatus/genética , Transporte Biológico Ativo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Filogenia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Vacúolos/metabolismo
11.
Eukaryot Cell ; 11(10): 1226-38, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22903976

RESUMO

The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H(2)O(2) (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P = 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P < 0.001) and H(2)O(2) (P < 0.01), unexpectedly, exogenous gliotoxin relieved H(2)O(2)-induced growth inhibition in a dose-dependent manner (0 to 10 µg/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P < 0.05) the growth of the ΔgliK(26933) deletion mutant. The A. fumigatus ΔgliK(26933) mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus ΔgliK(26933) mutant than in those of the wild type (P = 0.0024 [fold difference, 24] and P = 0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus ΔgliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus ΔgliK(26933) mutant compared to the wild type (P < 0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P = 0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the ΔgliK(46645) mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Gliotoxina/biossíntese , Estresse Oxidativo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Transporte Biológico , Ergotioneína/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica , Gliotoxina/metabolismo , Gliotoxina/farmacologia , Peróxido de Hidrogênio/toxicidade
12.
Eur J Nucl Med Mol Imaging ; 39(7): 1175-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526953

RESUMO

PURPOSE: Invasive pulmonary aspergillosis is mainly caused by Aspergillus fumigatus, and is one of the major causes of morbidity and mortality in immunocompromised patients. The mortality associated with invasive pulmonary aspergillosis remains high, mainly due to the difficulties and limitations in diagnosis. We have shown that siderophores can be labelled with (68)Ga and can be used for PET imaging of A. fumigatus infection in rats. Here we report on the further evaluation of the most promising (68)Ga-siderophore candidates, triacetylfusarinine (TAFC) and ferrioxamine E (FOXE). METHODS: Siderophores were labelled with (68)Ga using acetate buffer. Log P, protein binding and stability values were determined. Uptake by A. fumigatus was studied in vitro in cultures with high and low iron loads. In vivo biodistribution was determined in normal mice and an infection model was established using neutropenic rats inoculated with A. fumigatus. Static and dynamic µPET imaging was performed and correlated with CT images, and lung infection was evaluated ex vivo. RESULTS: (68)Ga-siderophores were labelled with high radiochemical purity and specific activity. (68)Ga-TAFC and (68)Ga-FOXE showed high uptake by A. fumigatus in iron-deficient cultures. In normal mice, (68)Ga-TAFC and (68)Ga-FOXE showed rapid renal excretion with high metabolic stability. In the rat infection model focal lung uptake was detected by µPET with both compounds and increased with severity of the infection, correlating with abnormal CT images. CONCLUSION: (68)Ga-TAFC and (68)Ga-FOXE displayed excellent in vitro stability and high uptake by A. fumigatus. Both compounds showed excellent pharmacokinetics, highly selective accumulation in infected lung tissue and good correlation with severity of disease in a rat infection model, which makes them promising agents for A. fumigatus infection imaging.


Assuntos
Aspergillus fumigatus/metabolismo , Radioisótopos de Gálio , Aspergilose Pulmonar/diagnóstico por imagem , Aspergilose Pulmonar/metabolismo , Sideróforos/farmacocinética , Animais , Modelos Animais de Doenças , Feminino , Compostos Férricos/farmacocinética , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/farmacocinética , Tomografia por Emissão de Pósitrons , Aspergilose Pulmonar/microbiologia , Aspergilose Pulmonar/patologia , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual
13.
Appl Environ Microbiol ; 78(9): 3166-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344643

RESUMO

The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production of fumitremorgins such as TR-2, fumitremorgin C and verruculogen, increased sensitivity to H(2)O(2), and increased sensitivity to the antifungals, voriconazole, and amphotericin B. Deletion of pesL resulted in severely reduced virulence in an invertebrate infection model (P < 0.001). These findings indicate that NRP synthesis plays an essential role in mediating the final prenylation step of the EA pathway, despite the apparent absence of NRP synthetases in the proposed EA biosynthetic cluster for A. fumigatus. Liquid chromatography/diode array detection/mass spectrometry analysis also revealed the presence of fumiquinazolines A to F in both A. fumigatus wild-type and ΔpesL strains. This observation suggests that alternative NRP synthetases can also function in fumiquinazoline biosynthesis, since PesL has been shown to mediate fumiquinazoline biosynthesis in vitro. Furthermore, we provide here the first direct link between EA biosynthesis and virulence, in agreement with the observed toxicity associated with EA exposure. Finally, we demonstrate a possible cluster cross-talk phenomenon, a theme which is beginning to emerge in the literature.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Alcaloides de Claviceps/biossíntese , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Alcaloides Indólicos , Quinazolinas/metabolismo , Fatores de Virulência/biossíntese
14.
Nucl Med Biol ; 39(3): 361-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22172389

RESUMO

INTRODUCTION: Siderophores are low-molecular-mass iron chelators serving as iron transporters for almost all bacteria, fungi and some plants. Iron is an essential element for majority of organisms and plays an important role in virulence of pathogenic organisms. (68)Ga is a positron emitter with complexing properties comparable to those of Fe(III) and readily available from a generator. Initial studies with (68)Ga-triacetylfusarinine C (TAFC) showed excellent targeting properties in a rat infection model. We report here on the in vitro and in vivo evaluation of other siderophores radiolabelled with (68)Ga as potential radiopharmaceuticals for infection imaging. METHODS: (68)Ga labelling was performed using acetate buffer. Stability, log P and protein binding values were determined. In vitro uptake was tested using iron-deficient and iron-sufficient Aspergillus fumigatus (A.f.) cultures. Biodistribution of (68)Ga-siderophores was studied in Balb/c mice. RESULTS: Significant differences among studied siderophores were observed in labelling efficiency, stability and protein binding. Uptake in A.f. cultures was highly dependent on iron load and type of the siderophore. In mice, (68)Ga-TAFC and (68)Ga-ferrioxamine E (FOXE) showed rapid renal excretion and low blood values even at a short period after injection; in contrast, (68)Ga-ferricrocin and (68)Ga-ferrichrome revealed high retention in blood and (68)Ga-fusarinine C showed very high kidney retention. CONCLUSIONS: Some of the studied siderophores bind (68)Ga with high affinity and stability, especially (68)Ga-TAFC and (68)Ga-FOXE. Low values of protein binding, high and specific uptake in A.f., and excellent in vivo biodistribution make them favourable agents for Aspergillus infection imaging.


Assuntos
Aspergilose/diagnóstico por imagem , Aspergillus fumigatus/metabolismo , Radioisótopos de Gálio/química , Sideróforos/química , Sideróforos/farmacocinética , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Ligação Competitiva , Compostos Férricos/química , Compostos Férricos/farmacocinética , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Cintilografia , Distribuição Tecidual
15.
Curr Opin Microbiol ; 14(4): 400-5, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21724450

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus adapts to iron limitation by upregulation of iron uptake mechanisms including siderophore biosynthesis and downregulation of iron-consuming pathways to spare iron. These metabolic changes depend mainly on the transcription factor HapX. Consistent with the crucial role of iron in pathophysiology, genetic inactivation of either HapX or the siderophore system attenuates virulence of A. fumigatus in a murine model of aspergillosis. The differences in iron handling between mammals and fungi might serve to improve therapy and diagnosis of fungal infections.


Assuntos
Aspergillus fumigatus/metabolismo , Homeostase , Ferro/metabolismo , Sideróforos/biossíntese , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Estrutura Molecular , Estresse Oxidativo , Sideróforos/química , Esporos Fúngicos/metabolismo , Transcrição Gênica , Ativação Transcricional , Virulência
16.
Infect Immun ; 79(10): 3978-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21746855

RESUMO

Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface ß-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Deleção de Genes , Mariposas/microbiologia , Peptídeo Sintases/genética , Aspergilose Pulmonar/microbiologia , Animais , Animais não Endogâmicos , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Linhagem Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Macrófagos/microbiologia , Camundongos , Peptídeo Sintases/metabolismo , Fenótipo , Pirimidinas/farmacologia , Triazóis/farmacologia , Virulência , Voriconazol
17.
Appl Environ Microbiol ; 77(14): 4959-66, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21622789

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus produces four types of siderophores, low-molecular-mass iron chelators: it excretes fusarinine C (FsC) and triacetylfusarinine C (TAFC) for iron uptake and accumulates ferricrocin (FC) for hyphal and hydroxyferricrocin (HFC) for conidial iron distribution and storage. Siderophore biosynthesis has recently been shown to be crucial for fungal virulence. Here we identified a new component of the fungal siderophore biosynthetic machinery: AFUA_1G04450, termed SidL. SidL is conserved only in siderophore-producing ascomycetes and shows similarity to transacylases involved in bacterial siderophore biosynthesis and the N(5)-hydroxyornithine:anhydromevalonyl coenzyme A-N(5)-transacylase SidF, which is essential for TAFC biosynthesis. Inactivation of SidL in A. fumigatus decreased FC biosynthesis during iron starvation and completely blocked FC biosynthesis during iron-replete growth. In agreement with these findings, SidL deficiency blocked conidial accumulation of FC-derived HFC under iron-replete conditions, which delayed germination and decreased the size of conidia and their resistance to oxidative stress. Remarkably, the sidL gene is not clustered with other siderophore-biosynthetic genes, and its expression is not affected by iron availability. Tagging of SidL with enhanced green fluorescent protein suggested a cytosolic localization of the FC-biosynthetic machinery. Taken together, these data suggest that SidL is a constitutively active N(5)-hydroxyornithine-acetylase required for FC biosynthesis, in particular under iron-replete conditions. Moreover, this study revealed the unexpected complexity of siderophore biosynthesis, indicating the existence of an additional, iron-repressed N(5)-hydroxyornithine-acetylase.


Assuntos
Acetiltransferases/metabolismo , Aspergillus fumigatus/enzimologia , Compostos Férricos/metabolismo , Ferricromo/análogos & derivados , Ácidos Hidroxâmicos/metabolismo , Sideróforos/biossíntese , Acetilcoenzima A/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Aspergillus fumigatus/genética , Citoplasma/metabolismo , Ferricromo/metabolismo , Proteínas de Fluorescência Verde , Ferro/metabolismo , Estresse Oxidativo/genética , Filogenia , Sideróforos/genética , Fatores de Virulência
18.
Chem Biol ; 18(4): 542-52, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21513890

RESUMO

Gliotoxin, a redox-active metabolite, is produced by the opportunistic fungal pathogen Aspergillus fumigatus, and its biosynthesis is directed by the gli gene cluster. Knowledge of the biosynthetic pathway to gliotoxin, which contains a disulfide bridge of unknown origin, is limited, although L-Phe and L-Ser are known biosynthetic precursors. Deletion of gliG from the gli cluster, herein functionally confirmed as a glutathione S-transferase, results in abrogation of gliotoxin biosynthesis and accumulation of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. This putative shunt metabolite from the gliotoxin biosynthetic pathway contains an intriguing hydroxyl group at C-6, consistent with a gliotoxin biosynthetic pathway involving thiolation via addition of the glutathione thiol group to a reactive acyl imine intermediate. Complementation of gliG restored gliotoxin production and, unlike gliT, gliG was found not to be involved in fungal self-protection against gliotoxin.


Assuntos
Aspergillus fumigatus/enzimologia , Gliotoxina/biossíntese , Glutationa Transferase/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Deleção de Genes , Glutationa Transferase/deficiência , Glutationa Transferase/genética , Oxirredutases/metabolismo , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
PLoS Pathog ; 6(9): e1001124, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20941352

RESUMO

Iron is essential for a wide range of cellular processes. Here we show that the bZIP-type regulator HapX is indispensable for the transcriptional remodeling required for adaption to iron starvation in the opportunistic fungal pathogen Aspergillus fumigatus. HapX represses iron-dependent and mitochondrial-localized activities including respiration, TCA cycle, amino acid metabolism, iron-sulfur-cluster and heme biosynthesis. In agreement with the impact on mitochondrial metabolism, HapX-deficiency decreases resistance to tetracycline and increases mitochondrial DNA content. Pathways positively affected by HapX include production of the ribotoxin AspF1 and siderophores, which are known virulence determinants. Iron starvation causes a massive remodeling of the amino acid pool and HapX is essential for the coordination of the production of siderophores and their precursor ornithine. Consistent with HapX-function being limited to iron depleted conditions and A. fumigatus facing iron starvation in the host, HapX-deficiency causes significant attenuation of virulence in a murine model of aspergillosis. Taken together, this study demonstrates that HapX-dependent adaption to conditions of iron starvation is crucial for virulence of A. fumigatus.


Assuntos
Adaptação Psicológica , Aspergilose/metabolismo , Aspergilose/virologia , Aspergillus fumigatus/patogenicidade , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Deficiências de Ferro , Virulência/fisiologia , Alérgenos , Aminoácidos/metabolismo , Animais , Antibacterianos/farmacologia , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Aspergilose/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Biomarcadores/metabolismo , Northern Blotting , DNA Mitocondrial/genética , Modelos Animais de Doenças , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ornitina/metabolismo , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sideróforos/fisiologia , Taxa de Sobrevida , Tetraciclina/farmacologia
20.
Microbes Infect ; 12(12-13): 1035-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20659583

RESUMO

Iron plays a central role in manifestation of infections for a variety of pathogens. To ensure an adequate supply with iron, Aspergillus fumigatus employs extra- and intracellular siderophores (low-molecular mass iron chelators), which are of importance for fungal growth in particular during iron starvation. Here we show that the lack of extracellular siderophores, and especially, the lack of the entire siderophore system cause in immunosuppressed mice in vivo (i) a reduced extracellular growth rate, (ii) a reduced intracellular growth rate in alveolar macrophages, and (iii) an increased susceptibility to conidial growth inhibition by alveolar macrophages. These data underline the crucial role of the fungal siderophore system not only for extracellular growth but also in the interaction with the host immune cells. Moreover, the hyphal growth rate within alveolar macrophages compared to extracellular lavage fluid was significantly decreased indicating that, besides elimination of fungal conidia, inhibition of pathogenic growth is a function of macrophages.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Interações Hospedeiro-Patógeno , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Sideróforos/metabolismo , Animais , Histocitoquímica , Humanos , Hifas/crescimento & desenvolvimento , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Microscopia , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...