Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 25(4): 427-40, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11260499

RESUMO

Several novel allelic groups of tomato (Solanum lycopersicum L.) mutants with impaired photomorphogenesis have been identified after gamma-ray mutagenesis of phyA phyB1 double-mutant seed. Recessive mutants in one allelic group are characterized by retarded hook opening, increased hypocotyl elongation and reduced hypocotyl chlorophyll content under white light (WL). These mutants showed a specific impairment in response to blue light (BL) resulting from lesions in the gene encoding the BL receptor cryptochrome 1 (cry1). Phytochrome A and cry1 are identified as the major photoreceptors mediating BL-induced de-etiolation in tomato, and act under low and high irradiances, respectively. Phytochromes B1 and B2 also contribute to BL sensing, and the relative contribution of each of these four photoreceptors differs according to the light conditions and the specific process examined. Development of the phyA phyB1 phyB2 cry1 quadruple mutant under WL is severely impaired, and seedlings die before flowering. The quadruple mutant is essentially blind to BL, but experiments employing simultaneous irradiation with BL and red light suggest that an additional non-phytochrome photoreceptor may be active under short daily BL exposures. In addition to effects on de-etiolation, cry1 is active in older, WL-grown plants, and influences stem elongation, apical dominance, and the chlorophyll content of leaves and fruit. These results provide the first mutant-based characterization of cry1 in a plant species other than Arabidopsis.


Assuntos
Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/fisiologia , Luz , Mutação , Células Fotorreceptoras de Invertebrados , Fitocromo/fisiologia , Solanum lycopersicum/fisiologia , Alelos , Sequência de Bases , Criptocromos , Primers do DNA , Flavoproteínas/genética , Complexos de Proteínas Captadores de Luz , Solanum lycopersicum/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Fitocromo/genética , Receptores Acoplados a Proteínas G
2.
Plant J ; 24(3): 345-56, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11069708

RESUMO

The role of phytochrome B2 (phyB2) in the control of photomorphogenesis in tomato (Solanum lycopersicum L.) has been investigated using recently isolated mutants carrying lesions in the PHYB2 gene. The physiological interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phyB2 have also been explored, using an isogenic series of all possible mutant combinations and several different phenotypic characteristics. The loss of phyB2 had a negligible effect on the development of white-light-grown wild-type or phyA-deficient plants, but substantially enhanced the elongated pale phenotype of the phyB1 mutant. This redundancy was also seen in the control of de-etiolation under continuous red light (R), where the loss of phyB2 had no detectable effect in the presence of phyB1. Under continuous R, phyA action was largely independent of phyB1 and phyB2 in terms of the control of hypocotyl elongation, but antagonized the effects of phyB1 in the control of anthocyanin synthesis, indicating that photoreceptors may interact differently to control different traits. Irradiance response curves for anthocyanin synthesis revealed that phyB1 and phyB2 together mediate all the detectable response to high-irradiance R, and, surprisingly, that the phyA-dependent low-irradiance component is also strongly reduced in the phyB1 phyB2 double mutant. This is not associated with a reduction in phyA protein content or responsiveness to continuous far-red light (FR), suggesting that phyB1 and phyB2 specifically influence phyA activity under low-irradiance R. Finally, the phyA phyB1 phyB2 triple mutant showed strong residual responsiveness to supplementary daytime FR, indicating that at least one of the two remaining phytochromes plays a significant role in tomato photomorphogenesis.


Assuntos
Células Fotorreceptoras , Fitocromo/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição , Sequência de Bases , Primers do DNA/genética , Genes de Plantas , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , Mutação , Fitocromo/genética , Fitocromo A , Fitocromo B
3.
Mol Gen Genet ; 261(6): 901-7, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10485280

RESUMO

The structure of the gene encoding the apoprotein of tomato phytochrome B2 (PHYB2) has been determined from genomic and cDNA sequences. The coding region is organized into four exons, like almost every other angiosperm phytochrome (phy). The deduced phyB2 apoprotein (PHYB2) consists of 1121 amino acids, with 82, 74 and 70% identity to tomato PHYB1, Arabidopsis PHYB, and Arabidopsis PHYD, respectively. In order to facilitate the identification of new mutants, we constructed a double mutant that is deficient in phyA and phyB1. When grown in white light, this mutant becomes only slightly taller than wild type and is similar in phenotype to the monogenic phyB1-deficient mutant. This double mutant has been used as the parent line for mutagenesis with gamma radiation. Several recessive mutants with long hypocotyls and reduced anthocyanin content were selected under white light and screened for mutations in PHYB2, PHYE and PHYF. Two of the triple-mutant lines, designated 55H and 70F, had elongated hypocotyls and fruit trusses, and pale immature fruits. Both belong to the same complementation group and both were found to have defects in PHYB2. Line 70F was found by Northern analysis to have a slightly larger PHYB2 transcript. Part or all of the intron between the second and third exons was found to be retained following RT-PCR of PHYB2 mRNA from line 70F. Three base substitutions were detected near the donor splice site for this intron, including a change from the consensus /GT to /GA at the 5' end of this intron. In every case, the C-terminal 164 amino acids of PHYB2 were replaced by 59 nonsense amino acids followed by a stop codon. Sequencing of PHYB2 from 55H revealed a single-nucleotide deletion near the end of the third exon, resulting in one incorrect codon followed immediately by a stop codon. The predicted mutant apoprotein in 55H is 90 residues shorter than wild-type PHYB2.


Assuntos
Alelos , Células Fotorreceptoras , Fitocromo/genética , Solanum lycopersicum/genética , Fatores de Transcrição , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis , Sequência de Bases , Primers do DNA , DNA Complementar , Mutagênese , Fenótipo , Fitocromo B , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...