Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Diabetes ; 71(9): 2034-2047, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35822820

RESUMO

Adipose tissue is a key regulator of whole-body metabolic fitness because of its role in controlling insulin sensitivity. Obesity is associated with hypertrophic adipocytes with impaired glucose absorption, a phenomenon existing in the ultrarare monogenic disorder Alström syndrome consisting of severe insulin resistance. Inactivation of ALMS1 directly inhibits insulin-mediated glucose absorption in the white adipose tissue and induces severe insulin resistance, which leads to type 2 diabetes, accelerated nonalcoholic liver disease, and fibrosis. These phenotypes were reversed by specific adipocyte-ALMS1 reactivation in vivo. Subsequently, ALMS1 was found to bind to protein kinase C-α (PKCα) in the adipocyte, and upon insulin signaling, PKCα is released from ALMS1. α-Helices in the kinase domain of PKCα were therefore screened to identify a peptide sequence that interfered with the ALMS1-PKCα protein interaction. When incubated with cultured human adipocytes, the stapled peptide termed PATAS, for Peptide derived of PKC Alpha Targeting AlmS, triggered insulin-independent glucose absorption, de novo lipogenesis, and cellular glucose utilization. In vivo, PATAS reduced whole-body insulin resistance, and improved glucose intolerance, fasting glucose, liver steatosis, and fibrosis in rodents. Thus, PATAS represents a novel first-in-class peptide that targets the adipocyte to ameliorate insulin resistance and its associated comorbidities.


Assuntos
Síndrome de Alstrom , Produtos Biológicos , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome de Alstrom/genética , Fibrose , Glucose/metabolismo , Humanos , Insulina/farmacologia , Resistência à Insulina/fisiologia , Proteína Quinase C-alfa
2.
Mol Oncol ; 16(13): 2518-2536, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919781

RESUMO

Androgen receptor (AR) signaling remains the key therapeutic target in the management of hormone-naïve-advanced prostate cancer (PCa) and castration-resistant PCa (CRPC). Recently, landmark molecular features have been reported for CRPC, including the expression of constitutively active AR variants that lack the ligand-binding domain. Besides their role in CRPC, AR variants lead to the expression of genes involved in tumor progression. However, little is known about the specificity of their mode of action compared with that of wild-type AR (AR-WT). We performed AR transcriptome analyses in an androgen-dependent PCa cell line as well as cross-analyses with publicly available RNA-seq datasets and established that transcriptional repression capacity that was marked for AR-WT was pathologically lost by AR variants. Functional enrichment analyses allowed us to associate AR-WT repressive function to a panel of genes involved in cell adhesion and epithelial-to-mesenchymal transition. So, we postulate that a less documented AR-WT normal function in prostate epithelial cells could be the repression of a panel of genes linked to cell plasticity and that this repressive function could be pathologically abrogated by AR variants in PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Androgênios , Linhagem Celular Tumoral , Plasticidade Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo
3.
Med Sci (Paris) ; 33(8-9): 758-764, 2017.
Artigo em Francês | MEDLINE | ID: mdl-28945566

RESUMO

Prostate cancer is a public health concern as it currently represents the most frequent malignancy in men in Europe. Progression of this hormone-dependent cancer is driven by androgens. Thus, the most common treatment for patients with advanced prostate cancer consists in an androgen ablation by castration therapy. However, the majority of patients relapses and develops a castration-resistant prostate cancer. This failure of androgen deprivation is related to the emergence of mutant and splice variants of the androgen receptor. Indeed, androgen receptor variants are ligand-independent, constitutively active and thus able to induce resistance to castration. This review focuses on AR variants signaling pathways and their role in resistance to castration and prostate cancer progression.


Assuntos
Polimorfismo Genético , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Castração , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...