Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38645049

RESUMO

Simulations are an essential tool in all areas of population genetic research, used in tasks such as the validation of theoretical analysis and the study of complex evolutionary models. Forward-in-time simulations are especially flexible, allowing for various types of natural selection, complex genetic architectures, and non-Wright-Fisher dynamics. However, their intense computational requirements can be prohibitive to simulating large populations and genomes. A popular method to alleviate this burden is to scale down the population size by some scaling factor while scaling up the mutation rate, selection coefficients, and recombination rate by the same factor. However, this rescaling approach may in some cases bias simulation results. To investigate the manner and degree to which rescaling impacts simulation outcomes, we carried out simulations with different demographic histories and distributions of fitness effects using several values of the rescaling factor, Q, and compared the deviation of key outcomes (fixation times, fixation probabilities, allele frequencies, and linkage disequilibrium) between the scaled and unscaled simulations. Our results indicate that scaling introduces substantial biases to each of these measured outcomes, even at small values of Q. Moreover, the nature of these effects depends on the evolutionary model and scaling factor being examined. While increasing the scaling factor tends to increase the observed biases, this relationship is not always straightforward, thus it may be difficult to know the impact of scaling on simulation outcomes a priori. However, it appears that for most models, only a small number of replicates was needed to accurately quantify the bias produced by rescaling for a given Q. In summary, while rescaling forward-in-time simulations may be necessary in many cases, researchers should be aware of the rescaling effect's impact on simulation outcomes and consider investigating its magnitude in smaller scale simulations of the desired model(s) before selecting an appropriate value of Q.

2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559089

RESUMO

Aedes aegypti is the main vector species of yellow fever, dengue, zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas its impact on genomic diversity. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ~35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ~0.02 at synonymous sites) and have experienced only a minor reduction in the efficacy of selection. These results evoke the image of an invasive species that has expanded its range with remarkable genetic resilience in the face of strong eradication pressure.

3.
PLoS Genet ; 20(2): e1010657, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377104

RESUMO

A growing body of evidence suggests that gene flow between closely related species is a widespread phenomenon. Alleles that introgress from one species into a close relative are typically neutral or deleterious, but sometimes confer a significant fitness advantage. Given the potential relevance to speciation and adaptation, numerous methods have therefore been devised to identify regions of the genome that have experienced introgression. Recently, supervised machine learning approaches have been shown to be highly effective for detecting introgression. One especially promising approach is to treat population genetic inference as an image classification problem, and feed an image representation of a population genetic alignment as input to a deep neural network that distinguishes among evolutionary models (i.e. introgression or no introgression). However, if we wish to investigate the full extent and fitness effects of introgression, merely identifying genomic regions in a population genetic alignment that harbor introgressed loci is insufficient-ideally we would be able to infer precisely which individuals have introgressed material and at which positions in the genome. Here we adapt a deep learning algorithm for semantic segmentation, the task of correctly identifying the type of object to which each individual pixel in an image belongs, to the task of identifying introgressed alleles. Our trained neural network is thus able to infer, for each individual in a two-population alignment, which of those individual's alleles were introgressed from the other population. We use simulated data to show that this approach is highly accurate, and that it can be readily extended to identify alleles that are introgressed from an unsampled "ghost" population, performing comparably to a supervised learning method tailored specifically to that task. Finally, we apply this method to data from Drosophila, showing that it is able to accurately recover introgressed haplotypes from real data. This analysis reveals that introgressed alleles are typically confined to lower frequencies within genic regions, suggestive of purifying selection, but are found at much higher frequencies in a region previously shown to be affected by adaptive introgression. Our method's success in recovering introgressed haplotypes in challenging real-world scenarios underscores the utility of deep learning approaches for making richer evolutionary inferences from genomic data.


Assuntos
Genética Populacional , Semântica , Humanos , Alelos , Genômica , Evolução Biológica
4.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865105

RESUMO

A growing body of evidence suggests that gene flow between closely related species is a widespread phenomenon. Alleles that introgress from one species into a close relative are typically neutral or deleterious, but sometimes confer a significant fitness advantage. Given the potential relevance to speciation and adaptation, numerous methods have therefore been devised to identify regions of the genome that have experienced introgression. Recently, supervised machine learning approaches have been shown to be highly effective for detecting introgression. One especially promising approach is to treat population genetic inference as an image classification problem, and feed an image representation of a population genetic alignment as input to a deep neural network that distinguishes among evolutionary models (i.e. introgression or no introgression). However, if we wish to investigate the full extent and fitness effects of introgression, merely identifying genomic regions in a population genetic alignment that harbor introgressed loci is insufficient-ideally we would be able to infer precisely which individuals have introgressed material and at which positions in the genome. Here we adapt a deep learning algorithm for semantic segmentation, the task of correctly identifying the type of object to which each individual pixel in an image belongs, to the task of identifying introgressed alleles. Our trained neural network is thus able to infer, for each individual in a two-population alignment, which of those individual's alleles were introgressed from the other population. We use simulated data to show that this approach is highly accurate, and that it can be readily extended to identify alleles that are introgressed from an unsampled "ghost" population, performing comparably to a supervised learning method tailored specifically to that task. Finally, we apply this method to data from Drosophila, showing that it is able to accurately recover introgressed haplotypes from real data. This analysis reveals that introgressed alleles are typically confined to lower frequencies within genic regions, suggestive of purifying selection, but are found at much higher frequencies in a region previously shown to be affected by adaptive introgression. Our method's success in recovering introgressed haplotypes in challenging real-world scenarios underscores the utility of deep learning approaches for making richer evolutionary inferences from genomic data.

5.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106127

RESUMO

The prominence of positive selection, in which beneficial mutations are favored by natural selection and rapidly increase in frequency, is a subject of intense debate. Positive selection can result in selective sweeps, in which the haplotype(s) bearing the adaptive allele "sweep" through the population, thereby removing much of the genetic diversity from the region surrounding the target of selection. Two models of selective sweeps have been proposed: classical sweeps, or "hard sweeps", in which a single copy of the adaptive allele sweeps to fixation, and "soft sweeps", in which multiple distinct copies of the adaptive allele leave descendants after the sweep. Soft sweeps can be the outcome of recurrent mutation to the adaptive allele, or the presence of standing genetic variation consisting of multiple copies of the adaptive allele prior to the onset of selection. Importantly, soft sweeps will be common when populations can rapidly adapt to novel selective pressures, either because of a high mutation rate or because adaptive alleles are already present. The prevalence of soft sweeps is especially controversial, and it has been noted that selection on standing variation or recurrent mutations may not always produce soft sweeps. Here, we show that the inverse is true: selection on single-origin de novo mutations may often result in an outcome that is indistinguishable from a soft sweep. This is made possible by allelic gene conversion, which "softens" hard sweeps by copying the adaptive allele onto multiple genetic backgrounds, a process we refer to as a "pseudo-soft" sweep. We carried out a simulation study examining the impact of gene conversion on sweeps from a single de novo variant in models of human, Drosophila, and Arabidopsis populations. The fraction of simulations in which gene conversion had produced multiple haplotypes with the adaptive allele upon fixation was appreciable. Indeed, under realistic demographic histories and gene conversion rates, even if selection always acts on a single-origin mutation, sweeps involving multiple haplotypes are more likely than hard sweeps in large populations, especially when selection is not extremely strong. Thus, even when the mutation rate is low or there is no standing variation, hard sweeps are expected to be the exception rather than the rule in large populations. These results also imply that the presence of signatures of soft sweeps does not necessarily mean that adaptation has been especially rapid or is not mutation limited.

6.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905020

RESUMO

Despite newly formed polyploids being subjected to myriad fitness consequences, the relative prevalence of polyploidy both contemporarily and in ancestral branches of the tree of life suggests alternative advantages that outweigh these consequences. One proposed advantage is that polyploids have an elevated adaptive potential that enables them to colonize novel habitats such as previously glaciated areas. However, previous research conducted in diploids suggests that range expansion comes with a fitness cost as deleterious mutations may fix rapidly on the expansion front. Here, we interrogate the potential consequences of expansion in polyploids by conducting spatially explicit forward-in-time simulations of autopolyploids, allopolyploids, and diploids to investigate how ploidy and inheritance patterns impact the relative ability of polyploids to expand their range. We show that under realistic dominance models, autopolyploids suffer greater fitness reductions than diploids as a result of range expansion due to the fixation of increased mutational load that is masked in the range core. Alternatively, the disomic inheritance of allopolyploids provides a shield to this fixation resulting in minimal fitness consequences under an empirically estimated DFE. In light of this advantage provided by disomy, we investigate how range expansion may influence cytogenetic diploidization through the reversion to disomy in autotetraploids. We show that under both a model of where the mode of inheritance is determined by a small number of loci and a model where inheritance is regulated by chromosomal similarity, disomy evolves more rapidly on the expansion front than in the range core, and that this dynamic inheritance model has additional effects on fitness. Together our results point to a complex interaction between dominance, ploidy, inheritance, and recombination on fitness as a population spreads across a geographic range.

7.
Elife ; 122023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37342968

RESUMO

Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.


Assuntos
Genoma , Software , Simulação por Computador , Genética Populacional , Genômica
8.
Genetics ; 224(3)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37157914

RESUMO

Despite decades of research, identifying selective sweeps, the genomic footprints of positive selection, remains a core problem in population genetics. Of the myriad methods that have been developed to tackle this task, few are designed to leverage the potential of genomic time-series data. This is because in most population genetic studies of natural populations, only a single period of time can be sampled. Recent advancements in sequencing technology, including improvements in extracting and sequencing ancient DNA, have made repeated samplings of a population possible, allowing for more direct analysis of recent evolutionary dynamics. Serial sampling of organisms with shorter generation times has also become more feasible due to improvements in the cost and throughput of sequencing. With these advances in mind, here we present Timesweeper, a fast and accurate convolutional neural network-based tool for identifying selective sweeps in data consisting of multiple genomic samplings of a population over time. Timesweeper analyzes population genomic time-series data by first simulating training data under a demographic model appropriate for the data of interest, training a one-dimensional convolutional neural network on said simulations, and inferring which polymorphisms in this serialized data set were the direct target of a completed or ongoing selective sweep. We show that Timesweeper is accurate under multiple simulated demographic and sampling scenarios, identifies selected variants with high resolution, and estimates selection coefficients more accurately than existing methods. In sum, we show that more accurate inferences about natural selection are possible when genomic time-series data are available; such data will continue to proliferate in coming years due to both the sequencing of ancient samples and repeated samplings of extant populations with faster generation times, as well as experimentally evolved populations where time-series data are often generated. Methodological advances such as Timesweeper thus have the potential to help resolve the controversy over the role of positive selection in the genome. We provide Timesweeper as a Python package for use by the community.


Assuntos
Genética Populacional , Metagenômica , Fatores de Tempo , Polimorfismo Genético , Seleção Genética
9.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067864

RESUMO

Numerous studies over the last decade have demonstrated the utility of machine learning methods when applied to population genetic tasks. More recent studies show the potential of deep-learning methods in particular, which allow researchers to approach problems without making prior assumptions about how the data should be summarized or manipulated, instead learning their own internal representation of the data in an attempt to maximize inferential accuracy. One type of deep neural network, called Generative Adversarial Networks (GANs), can even be used to generate new data, and this approach has been used to create individual artificial human genomes free from privacy concerns. In this study, we further explore the application of GANs in population genetics by designing and training a network to learn the statistical distribution of population genetic alignments (i.e. data sets consisting of sequences from an entire population sample) under several diverse evolutionary histories-the first GAN capable of performing this task. After testing multiple different neural network architectures, we report the results of a fully differentiable Deep-Convolutional Wasserstein GAN with gradient penalty that is capable of generating artificial examples of population genetic alignments that successfully mimic key aspects of the training data, including the site-frequency spectrum, differentiation between populations, and patterns of linkage disequilibrium. We demonstrate consistent training success across various evolutionary models, including models of panmictic and subdivided populations, populations at equilibrium and experiencing changes in size, and populations experiencing either no selection or positive selection of various strengths, all without the need for extensive hyperparameter tuning. Overall, our findings highlight the ability of GANs to learn and mimic population genetic data and suggest future areas where this work can be applied in population genetics research that we discuss herein.


Assuntos
Evolução Biológica , Genoma Humano , Humanos , Desequilíbrio de Ligação , Aprendizado de Máquina , Privacidade
10.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971242

RESUMO

Aedes aegypti vectors the pathogens that cause dengue, yellow fever, Zika virus, and chikungunya and is a serious threat to public health in tropical regions. Decades of work has illuminated many aspects of Ae. aegypti's biology and global population structure and has identified insecticide resistance genes; however, the size and repetitive nature of the Ae. aegypti genome have limited our ability to detect positive selection in this mosquito. Combining new whole genome sequences from Colombia with publicly available data from Africa and the Americas, we identify multiple strong candidate selective sweeps in Ae. aegypti, many of which overlap genes linked to or implicated in insecticide resistance. We examine the voltage-gated sodium channel gene in three American cohorts and find evidence for successive selective sweeps in Colombia. The most recent sweep encompasses an intermediate-frequency haplotype containing four candidate insecticide resistance mutations that are in near-perfect linkage disequilibrium with one another in the Colombian sample. We hypothesize that this haplotype may continue to rapidly increase in frequency and perhaps spread geographically in the coming years. These results extend our knowledge of how insecticide resistance has evolved in this species and add to a growing body of evidence suggesting that Ae. aegypti has an extensive genomic capacity to rapidly adapt to insecticide-based vector control.


Assuntos
Aedes , Genoma de Inseto , Resistência a Inseticidas , Inseticidas , Animais , Aedes/genética , Dengue , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Zika virus , Infecção por Zika virus , Genoma de Inseto/efeitos dos fármacos , Genoma de Inseto/genética
11.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947126

RESUMO

Gene flow between previously differentiated populations during the founding of an admixed or hybrid population has the potential to introduce adaptive alleles into the new population. If the adaptive allele is common in one source population, but not the other, then as the adaptive allele rises in frequency in the admixed population, genetic ancestry from the source containing the adaptive allele will increase nearby as well. Patterns of genetic ancestry have therefore been used to identify post-admixture positive selection in humans and other animals, including examples in immunity, metabolism, and animal coloration. A common method identifies regions of the genome that have local ancestry "outliers" compared with the distribution across the rest of the genome, considering each locus independently. However, we lack theoretical models for expected distributions of ancestry under various demographic scenarios, resulting in potential false positives and false negatives. Further, ancestry patterns between distant sites are often not independent. As a result, current methods tend to infer wide genomic regions containing many genes as under selection, limiting biological interpretation. Instead, we develop a deep learning object detection method applied to images generated from local ancestry-painted genomes. This approach preserves information from the surrounding genomic context and avoids potential pitfalls of user-defined summary statistics. We find the method is robust to a variety of demographic misspecifications using simulated data. Applied to human genotype data from Cabo Verde, we localize a known adaptive locus to a single narrow region compared with multiple or long windows obtained using two other ancestry-based methods.


Assuntos
Genética Populacional , Genômica , Animais , Humanos , Genômica/métodos , Genótipo , Fluxo Gênico , Cromossomos
12.
Am J Hum Genet ; 109(11): 1986-1997, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198314

RESUMO

Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Calibragem , Genótipo , Aprendizado de Máquina
13.
Syst Biol ; 71(3): 526-546, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34324671

RESUMO

Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here, we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, nonmodel insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression. [Gene flow; Odonata; phylogenomics; reticulate evolution.].


Assuntos
Odonatos , Animais , Genoma , Insetos/anatomia & histologia , Odonatos/anatomia & histologia , Odonatos/genética , Filogenia
14.
Curr Biol ; 32(1): 111-123.e5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34788634

RESUMO

Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.


Assuntos
Drosophila , Genoma , Animais , Evolução Biológica , Drosophila/genética , Hibridização Genética , Filogenia
15.
PNAS Nexus ; 1(5): pgac243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712323

RESUMO

Understanding phenotypic sex differences has long been a goal of biology from both a medical and evolutionary perspective. Although much attention has been paid to mean differences in phenotype between the sexes, little is known about sex differences in phenotypic variability. To gain insight into sex differences in interindividual variability at the molecular level, we analyzed RNA-seq data from 43 tissues from the Genotype-Tissue Expression project (GTEx). Within each tissue, we identified genes that show sex differences in gene expression variability. We found that these sex-differentially variable (SDV) genes are associated with various important biological functions, including sex hormone response, immune response, and other signaling pathways. By analyzing single-cell RNA sequencing data collected from breast epithelial cells, we found that genes with sex differences in gene expression variability in breast tissue tend to be expressed in a cell-type-specific manner. We looked for an association between SDV expression and Graves' disease, a well-known heavily female-biased disease, and found a significant enrichment of Graves' associated genes among genes with higher variability in females in thyroid tissue. This suggests a possible role for SDV expression in sex-biased disease. We then examined the evolutionary constraints acting on genes with sex differences in variability and found that they exhibit evidence of increased selective constraint. Through analysis of sex-biased eQTL data, we found evidence that SDV expression may have a genetic basis. Finally, we propose a simple evolutionary model for the emergence of SDV expression from sex-specific constraints.

16.
Mol Biol Evol ; 38(3): 1168-1183, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33022051

RESUMO

Identification of partial sweeps, which include both hard and soft sweeps that have not currently reached fixation, provides crucial information about ongoing evolutionary responses. To this end, we introduce partialS/HIC, a deep learning method to discover selective sweeps from population genomic data. partialS/HIC uses a convolutional neural network for image processing, which is trained with a large suite of summary statistics derived from coalescent simulations incorporating population-specific history, to distinguish between completed versus partial sweeps, hard versus soft sweeps, and regions directly affected by selection versus those merely linked to nearby selective sweeps. We perform several simulation experiments under various demographic scenarios to demonstrate partialS/HIC's performance, which exhibits excellent resolution for detecting partial sweeps. We also apply our classifier to whole genomes from eight mosquito populations sampled across sub-Saharan Africa by the Anopheles gambiae 1000 Genomes Consortium, elucidating both continent-wide patterns as well as sweeps unique to specific geographic regions. These populations have experienced intense insecticide exposure over the past two decades, and we observe a strong overrepresentation of sweeps at insecticide resistance loci. Our analysis thus provides a list of candidate adaptive loci that may be relevant to mosquito control efforts. More broadly, our supervised machine learning approach introduces a method to distinguish between completed and partial sweeps, as well as between hard and soft sweeps, under a variety of demographic scenarios. As whole-genome data rapidly accumulate for a greater diversity of organisms, partialS/HIC addresses an increasing demand for useful selection scan tools that can track in-progress evolutionary dynamics.


Assuntos
Anopheles/genética , Aprendizado Profundo , Resistência a Inseticidas/genética , Seleção Genética , Animais , Genoma de Inseto
17.
Genetics ; 216(2): 499-519, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32847814

RESUMO

It is increasingly evident that natural selection plays a prominent role in shaping patterns of diversity across the genome. The most commonly studied modes of natural selection are positive selection and negative selection, which refer to directional selection for and against derived mutations, respectively. Positive selection can result in hitchhiking events, in which a beneficial allele rapidly replaces all others in the population, creating a valley of diversity around the selected site along with characteristic skews in allele frequencies and linkage disequilibrium among linked neutral polymorphisms. Similarly, negative selection reduces variation not only at selected sites but also at linked sites, a phenomenon called background selection (BGS). Thus, discriminating between these two forces may be difficult, and one might expect efforts to detect hitchhiking to produce an excess of false positives in regions affected by BGS. Here, we examine the similarity between BGS and hitchhiking models via simulation. First, we show that BGS may somewhat resemble hitchhiking in simplistic scenarios in which a region constrained by negative selection is flanked by large stretches of unconstrained sites, echoing previous results. However, this scenario does not mirror the actual spatial arrangement of selected sites across the genome. By performing forward simulations under more realistic scenarios of BGS, modeling the locations of protein-coding and conserved noncoding DNA in real genomes, we show that the spatial patterns of variation produced by BGS rarely mimic those of hitchhiking events. Indeed, BGS is not substantially more likely than neutrality to produce false signatures of hitchhiking. This holds for simulations modeled after both humans and Drosophila, and for several different demographic histories. These results demonstrate that appropriately designed scans for hitchhiking need not consider BGS's impact on false-positive rates. However, we do find evidence that BGS increases the false-negative rate for hitchhiking, an observation that demands further investigation.


Assuntos
Patrimônio Genético , Polimorfismo Genético , Seleção Genética , Animais , Drosophila , Evolução Molecular , Genética Populacional/métodos , Genética Populacional/normas , Genômica/métodos , Genômica/normas , Humanos , Modelos Genéticos
18.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573438

RESUMO

The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.


Assuntos
Genética Populacional , Biblioteca Genômica , Modelos Genéticos , Animais , Arabidopsis/genética , Cães/genética , Drosophila melanogaster/genética , Escherichia coli/genética , Genética Populacional/métodos , Genética Populacional/organização & administração , Genoma/genética , Genoma Humano/genética , Humanos , Pongo abelii/genética
19.
Syst Biol ; 69(2): 221-233, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504938

RESUMO

Reconstructing the phylogenetic relationships between species is one of the most formidable tasks in evolutionary biology. Multiple methods exist to reconstruct phylogenetic trees, each with their own strengths and weaknesses. Both simulation and empirical studies have identified several "zones" of parameter space where accuracy of some methods can plummet, even for four-taxon trees. Further, some methods can have undesirable statistical properties such as statistical inconsistency and/or the tendency to be positively misleading (i.e. assert strong support for the incorrect tree topology). Recently, deep learning techniques have made inroads on a number of both new and longstanding problems in biological research. In this study, we designed a deep convolutional neural network (CNN) to infer quartet topologies from multiple sequence alignments. This CNN can readily be trained to make inferences using both gapped and ungapped data. We show that our approach is highly accurate on simulated data, often outperforming traditional methods, and is remarkably robust to bias-inducing regions of parameter space such as the Felsenstein zone and the Farris zone. We also demonstrate that the confidence scores produced by our CNN can more accurately assess support for the chosen topology than bootstrap and posterior probability scores from traditional methods. Although numerous practical challenges remain, these findings suggest that the deep learning approaches such as ours have the potential to produce more accurate phylogenetic inferences.


Assuntos
Classificação/métodos , Aprendizado Profundo , Filogenia , Alinhamento de Sequência/métodos , Simulação por Computador , Redes Neurais de Computação
20.
Mol Biol Evol ; 36(2): 220-238, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517664

RESUMO

Population-scale genomic data sets have given researchers incredible amounts of information from which to infer evolutionary histories. Concomitant with this flood of data, theoretical and methodological advances have sought to extract information from genomic sequences to infer demographic events such as population size changes and gene flow among closely related populations/species, construct recombination maps, and uncover loci underlying recent adaptation. To date, most methods make use of only one or a few summaries of the input sequences and therefore ignore potentially useful information encoded in the data. The most sophisticated of these approaches involve likelihood calculations, which require theoretical advances for each new problem, and often focus on a single aspect of the data (e.g., only allele frequency information) in the interest of mathematical and computational tractability. Directly interrogating the entirety of the input sequence data in a likelihood-free manner would thus offer a fruitful alternative. Here, we accomplish this by representing DNA sequence alignments as images and using a class of deep learning methods called convolutional neural networks (CNNs) to make population genetic inferences from these images. We apply CNNs to a number of evolutionary questions and find that they frequently match or exceed the accuracy of current methods. Importantly, we show that CNNs perform accurate evolutionary model selection and parameter estimation, even on problems that have not received detailed theoretical treatments. Thus, when applied to population genetic alignments, CNNs are capable of outperforming expert-derived statistical methods and offer a new path forward in cases where no likelihood approach exists.


Assuntos
Genética Populacional/métodos , Redes Neurais de Computação , Animais , Hibridização Genética , Recombinação Genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...